bzoj 2809 左偏树

题意:给定一棵n个点的树,每个点有各自的代价和价值,对以每个点为根的子树里最多能选多少点使得这些点的代价和不超过限制

乍一看是维护代价小根堆,能选小的就选小的,然而复杂度原地爆炸

那么换个角度,一开始对一个子树全选,最少丢弃多少点使得它们的代价和不超过限制

显然是维护一个代价的大根堆

我们就从下往上进行处理

显然我们需要资磁合并、删除、快速找到代价最大的点

显然左偏树

uses math;
var
        n,m,x,ll,root   :longint;
        last,pre,other  :array[0..100010] of longint;
        i               :longint;
        l,r,size,dis    :array[0..100010] of longint;
        sum,cost,v      :array[0..100010] of int64;
        ans             :int64;

procedure swap(var a,b:longint);
var
        c:longint;
begin
   c:=a; a:=b; b:=c;
end;

procedure connect(x,y:longint);
begin
   inc(ll);
   pre[ll]:=last[x];
   last[x]:=ll;
   other[ll]:=y;
end;

function combine(x,y:longint):longint;
begin
   if (x=0) or (y=0) then exit(x+y);
   if cost[x]<cost[y] then swap(x,y);
   r[x]:=combine(r[x],y);
   sum[x]:=sum[l[x]]+sum[r[x]]+cost[x];
   size[x]:=size[l[x]]+size[r[x]]+1;
   if dis[l[x]]<dis[r[x]] then swap(l[x],r[x]);
   dis[x]:=dis[r[x]]+1;
   exit(x);
end;

function work(x:longint):longint;
var
        p,q,rt:longint;
begin
   sum[x]:=cost[x];
   size[x]:=1;
   rt:=x;
   q:=last[x];
   while q<>0 do
   begin
      p:=other[q];
      rt:=combine(work(p),rt);
      q:=pre[q];
   end;
   while (sum[rt]>m) do rt:=combine(l[rt],r[rt]);
   ans:=max(ans,int64(size[rt])*v[x]);
   exit(rt);
end;

begin
   read(n,m);
   for i:=1 to n do
   begin
      read(x,cost[i],v[i]);
      if x<>0 then connect(x,i) else root:=i;
   end;
   work(root);
   writeln(ans);
end.
——by Eirlys



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值