leetcode.209. 长度最小的子数 组滑动窗口题解

定一个含有 n 个正整数的数组和一个正整数 target 。

找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl+1, …, numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。

示例 1:

输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。
示例 2:

输入:target = 4, nums = [1,4,4]
输出:1
示例 3:

输入:target = 11, nums = [1,1,1,1,1,1,1,1]
输出:0

提示:

1 <= target <= 109
1 <= nums.length <= 105
1 <= nums[i] <= 105

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-size-subarray-sum

首先分析题目,如果这题不要求时间复杂度显而易见是一道非常简单的题目,只需要两个for循环就可以解出答案,但这并不是题目所考察的要点。

要想从O(n^2)降到O(n),对数组的方法通常有二分法双指针法

二分法在这里不符合要求,所以就想到双指针法,使用两个指针,右指针不断向右边移动,每移动一次就加到sum中,直到sum符合要求>=target,然后移动左指针直到sum<target,其中每移动都更新答案状态,重复以上步骤就得出答案,这个方法也叫滑动窗口法,本质上依然是双指针。

代码如下:

class Solution {
    public int minSubArrayLen(int target, int[] nums) {
        int l = 0;//左指针
        int r = 0;//右指针
        int sum = 0;
        int ans = Integer.MAX_VALUE;//要求的是最小值,所以初始化为最大值
        while(r <= nums.length - 1){
            sum += nums[r];
            r++;
            while(sum>=target){ //每次符合要求的都要更新一次答案再减
                int tmp = r - l;
                ans = tmp < ans ? tmp : ans;
                sum -= nums[l];
                l++;
            }
        }
        if(ans==Integer.MAX_VALUE)
        return 0;
        return ans;
    }
}

如果有什么问题欢迎交流。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值