给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。
如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。如果 pos 是 -1,则在该链表中没有环。注意:pos 不作为参数进行传递,仅仅是为了标识链表的实际情况。
不允许修改 链表。
示例 1:
输入:head = [3,2,0,-4], pos = 1
输出:返回索引为 1 的链表节点
解释:链表中有一个环,其尾部连接到第二个节点。
示例 2:
输入:head = [1,2], pos = 0
输出:返回索引为 0 的链表节点
解释:链表中有一个环,其尾部连接到第一个节点。
示例 3:
输入:head = [1], pos = -1
输出:返回 null
解释:链表中没有环。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/linked-list-cycle-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
分析题目:
首先简单方法可以用一个Set,把每个节点都放进去,不断遍历,遇到重复的节点就是环的入口节点,直接返回即可,这里就不在赘述。
如果要进行优化的话,链表题目一定要想到快慢指针方法,这道题就是使用快慢指针法,难度主要是在在找规律上。以下用s代指慢指针,f代指快指针。
每当s移动一次的时候,f就移动两次,所以可以得出f=2s。
当s和f相遇的时候,一定是走了整数倍的环的距离,用n表示倍数,z表示环的长度,那么f走过的距离就是f=s+nz;
(至于为什么一定是环的距离的倍数,我们画一个圆,然后模拟一次快慢指针走一遍就会发现一定是走完了一个圈才能相遇,同样由于这个定理我们可以得出一个指针走到环的入口的行走距离是t=q+nz,抢就是环之前的距离)
综上公式可以得出f=2nz,s=nz。
根据以上t=q+nz和s=nz两个公式分析,当两个指针相遇的时候慢指针走了nz的距离,而环的入口距离为q+nz,相减得到q。
可知慢指针还需要再走q步,这q步就是从头结点到环的入口的距离,令f指向头结点或者任何一个指针指向头结点,和慢指针步距相同,当走到同一个节点的时候,这个就是入口节点。
代码如下:
/**
* Definition for singly-linked list.
* class ListNode {
* int val;
* ListNode next;
* ListNode(int x) {
* val = x;
* next = null;
* }
* }
*/
public class Solution {
public ListNode detectCycle(ListNode head) {
ListNode slow,fast;
slow = head;
fast = head;
while(true){
if(fast == null || fast.next == null || fast.next.next == null){
return null;
}
slow = slow.next;
fast = fast.next.next;
if(slow == fast){
break;
}
}
fast = head;
while(slow != fast){
slow = slow.next;
fast = fast.next;
}
return fast;
}
}