系统完成问题:理论与应用
1. 基本概念与问题提出
在控制理论中,线性时不变系统通常采用标准的状态空间表示:
[
\begin{cases}
Dx(t) = Ax(t) + Bu(t) \
y(t) = Cx(t) + Du(t)
\end{cases}
]
其中,系统有 (n) 个状态、(m) 个输入和 (p) 个输出,(A \in R^{n×n}),(B \in R^{n×m}),(C \in R^{p×n}),(D \in R^{p×m}),对于连续时间系统,(D) 表示微分算子。根据输入和输出的数量关系,系统可分为宽系统((m > p))、高系统((m < p))和方形系统((m = p))。
对于非退化、可控且可观测的系统,其传输零点由 (\lambda \in C) 定义,满足:
[
\rho[R(\lambda)] = \rho
\begin{bmatrix}
A - \lambda I & B \
C & D
\end{bmatrix}
< n + \min(m, p)
]
其中,(\rho) 表示矩阵束 (R(\lambda)) 的秩。传输零点在状态或输出反馈下是不变的,一旦系统的四元组 (\Sigma(A, B, C, D)) 确定,传输零点的位置就由上述秩条件决定。
本文主要探讨两个紧密相关的问题:
- 平方化或部分系统完成问题 :给定一个高系统或宽系统,在什么条件下可以找到 (B) 和 (D) 的额外列,或者 (C)
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



