Weakness and Poorness CodeForces - 578C (三分)

You are given a sequence of n integers a1, a2, …, an.

Determine a real number x such that the weakness of the sequence a1 - x, a2 - x, …, an - x is as small as possible.

The weakness of a sequence is defined as the maximum value of the poorness over all segments (contiguous subsequences) of a sequence.

The poorness of a segment is defined as the absolute value of sum of the elements of segment.

Input
The first line contains one integer n (1 ≤ n ≤ 200 000), the length of a sequence.

The second line contains n integers a1, a2, …, an (|ai| ≤ 10 000).

Output
Output a real number denoting the minimum possible weakness of a1 - x, a2 - x, …, an - x. Your answer will be considered correct if its relative or absolute error doesn’t exceed 10 ^- 6.

Example

Input
3
1 2 3
Output
1.000000000000000

Input
4
1 2 3 4
Output
2.000000000000000

Input
10
1 10 2 9 3 8 4 7 5 6
Output
4.500000000000000

Note
For the first case, the optimal value of x is 2 so the sequence becomes  - 1, 0, 1 and the max poorness occurs at the segment “-1” or segment “1”. The poorness value (answer) equals to 1 in this case.

For the second sample the optimal value of x is 2.5 so the sequence becomes  - 1.5,  - 0.5, 0.5, 1.5 and the max poorness occurs on segment “-1.5 -0.5” or “0.5 1.5”. The poorness value (answer) equals to 2 in this case.

大致题意:给定一个序列A , 一个区间的poorness定义为这个区间内和的绝对值。序列A的 weakness等于所有区间最大的poorness。让你求一个x使得序列A中所有的数减x后所构成的序列的weakness最小

思路:当x极小或者极大时,答案都会很大,所以在这段范围内存在一个x使得答案最小,所以我们对x进行三分。(需要注意的是这题对精度要求十分严格,所以我们直接设置三分的次数,大概在100次左右就可以了)

代码如下

#include <cstdio>  
#include <cstring>  
#include <iostream> 
#include <algorithm>
#include <map>   
#include <cmath>
#define ll long long

using namespace std; 
int num[200005];
//double eps=1e-12;
int n;
double solve(double x)
{
    double sum1=0,sum2=0;
    double  ch=0; 
    for(int i=1;i<=n;i++)//求连续区间的最大和
    {
        ch+=num[i]-x;
        if(ch>sum1) sum1=ch;
        if(ch<0) ch=0;
    }

    ch=0;
    for(int i=1;i<=n;i++)//求连续区间的最小和
    {
        ch+=num[i]-x;
        if(ch<sum2)  sum2=ch;
        if(ch>0)  ch=0;
    }

    return max(sum1,-sum2);//最大的和的绝对值
}
int main() 
{ 
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
    scanf("%d",&num[i]);

    double l=-1e5,r=1e5,mid,mmid;

//  while(r-l>eps)
    int t=100;
    while(t--) 
    {
        mid=(l+r)/2.0;
        mmid=(mid+r)/2.0;
        if(solve(mid)<solve(mmid))
        r=mmid;
        else 
        l=mid;
    }
    printf("%.15f\n",solve(r));
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值