You are given a sequence of n integers a1, a2, …, an.
Determine a real number x such that the weakness of the sequence a1 - x, a2 - x, …, an - x is as small as possible.
The weakness of a sequence is defined as the maximum value of the poorness over all segments (contiguous subsequences) of a sequence.
The poorness of a segment is defined as the absolute value of sum of the elements of segment.
Input
The first line contains one integer n (1 ≤ n ≤ 200 000), the length of a sequence.
The second line contains n integers a1, a2, …, an (|ai| ≤ 10 000).
Output
Output a real number denoting the minimum possible weakness of a1 - x, a2 - x, …, an - x. Your answer will be considered correct if its relative or absolute error doesn’t exceed 10 ^- 6.
Example
Input
3
1 2 3
Output
1.000000000000000
Input
4
1 2 3 4
Output
2.000000000000000
Input
10
1 10 2 9 3 8 4 7 5 6
Output
4.500000000000000
Note
For the first case, the optimal value of x is 2 so the sequence becomes - 1, 0, 1 and the max poorness occurs at the segment “-1” or segment “1”. The poorness value (answer) equals to 1 in this case.
For the second sample the optimal value of x is 2.5 so the sequence becomes - 1.5, - 0.5, 0.5, 1.5 and the max poorness occurs on segment “-1.5 -0.5” or “0.5 1.5”. The poorness value (answer) equals to 2 in this case.
大致题意:给定一个序列A , 一个区间的poorness定义为这个区间内和的绝对值。序列A的 weakness等于所有区间最大的poorness。让你求一个x使得序列A中所有的数减x后所构成的序列的weakness最小
思路:当x极小或者极大时,答案都会很大,所以在这段范围内存在一个x使得答案最小,所以我们对x进行三分。(需要注意的是这题对精度要求十分严格,所以我们直接设置三分的次数,大概在100次左右就可以了)
代码如下
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <map>
#include <cmath>
#define ll long long
using namespace std;
int num[200005];
//double eps=1e-12;
int n;
double solve(double x)
{
double sum1=0,sum2=0;
double ch=0;
for(int i=1;i<=n;i++)//求连续区间的最大和
{
ch+=num[i]-x;
if(ch>sum1) sum1=ch;
if(ch<0) ch=0;
}
ch=0;
for(int i=1;i<=n;i++)//求连续区间的最小和
{
ch+=num[i]-x;
if(ch<sum2) sum2=ch;
if(ch>0) ch=0;
}
return max(sum1,-sum2);//最大的和的绝对值
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&num[i]);
double l=-1e5,r=1e5,mid,mmid;
// while(r-l>eps)
int t=100;
while(t--)
{
mid=(l+r)/2.0;
mmid=(mid+r)/2.0;
if(solve(mid)<solve(mmid))
r=mmid;
else
l=mid;
}
printf("%.15f\n",solve(r));
}