Where do odds begin, and where do they end? Where does hope emerge, and will they ever break?
Given an integer sequence a1, a2, …, an of length n. Decide whether it is possible to divide it into an odd number of non-empty subsegments, the each of which has an odd length and begins and ends with odd numbers.
A subsegment is a contiguous slice of the whole sequence. For example, {3, 4, 5} and {1} are subsegments of sequence {1, 2, 3, 4, 5, 6}, while {1, 2, 4} and {7} are not.
Input
The first line of input contains a non-negative integer n (1 ≤ n ≤ 100) — the length of the sequence.
The second line contains n space-separated non-negative integers a1, a2, …, an (0 ≤ ai ≤ 100) — the elements of the sequence.
Output
Output “Yes” if it’s possible to fulfill the requirements, and “No” otherwise.
You can output each letter in any case (upper or lower).
Examples
input
3
1 3 5
output
Yes
input
5
1 0 1 5 1
output
Yes
input
3
4 3 1
output
No
input
4
3 9 9 3
output
No
Note
In the first example, divide the sequence into 1 subsegment: {1, 3, 5} and the requirements will be met.
In the second example, divide the sequence into 3 subsegments: {1, 0, 1}, {5}, {1}.
In the third example, one of the subsegments must start with 4 which is an even number, thus the requirements cannot be met.
In the fourth example, the sequence can be divided into 2 subsegments: {3, 9, 9}, {3}, but this is not a valid solution because 2 is an even number.
题意一定要看清!!!一定要看清!!!一定要看清!!!
大致题意:将一个序列分成奇数个序列(开始没看到这个条件,结果卡了半天),且要求每个子序列中元素的个数为奇数个,每个子序列的头尾两个数均为奇数。如果能满足要求则输出yes否则no。
思路:奇数个奇数相加等于奇数,所以序列长度n必须满足是奇数,然后首尾两个数也必须满足是奇数。所以这样子的话这个序列本身就是满足条件不用分了。判断一下奇偶即可。
代码如下
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <queue>
#include <cstdio>
#include <map>
using namespace std;
int main()
{
int n;
scanf("%d",&n);
int x,y;
scanf("%d",&x);
y=x;
for(int i=2;i<=n;i++)
scanf("%d",&y);
if(n&1&&x&1&&y&1)
printf("Yes\n");
else
printf("No\n");
}