2018年Composer最佳实践
Composer创始人分享的一张pdf,共68页,让你对composer有更好的理解。
《算法珠玑》Java版本 一个最精简的题库
本书的目标读者是准备去硅谷找工作的码农,也适用于在国内找工作的码农,以及刚接触ACM算法竞赛的新手。
市场上讲解算法的书已经汗牛充栋,为什么还要写这本书呢?主要原因是我对目前市场上的大部分算法书都不太满意。 本书有如下特色:
背后有强大的AlgoHub支持。
本书的所有题目,都可以在 www.algohub.org(即将上线) 上在线判断代码。这样的一大好处是,读者可以边看书,边实现自己的代码,然后提交到网站上验证自己的想法是否正确。AlgoHub的使命是成为最好的算法学习和交流平台。AlgoHub囊括了 POJ, ZOJ, leetcode, HackerRank 等网站的经典题目(一些质量不高的题目则忽略),且 AlgoHub有非常简单的加题系统,用户不需要写一行代码即可自己添加题目,所以AlgoHub的题库还在飞速增长中。
每道题都有完整的代码。
市场上的大部分书,都会讲思路,但给出的代码都是片段,不是完整可编译的代码。本书每题都有完整的代码,且每个代码经过千锤百炼,保证可读性的前提下尽可能简短,方面读者在面试中能快速写出来。
每道题都有多种解法。
本书的宗旨是,用尽可能少的题目,覆盖尽可能多的算法。本书中的的每道题都有多种解法,每种解法不是简单的小改进,而是完全不同的思路,力求举一反三,让读者触类旁通。
本书支持多种主流编程语言。
目前支持 Java, C++, C#, Python, Ruby, JavaScript, Swift, Scala, Clojure, 将来还会支持更多编程语言。
C++并发编程(中文版)
作为对《C++ Concurrency in Action》的中文翻译。
本书是基于C++11新标准的并发和多线程编程深度指南。
从std::thread、std::mutex、std::future和std::async等基础类的使用,到内存模型和原子操作、基于锁和无锁数据结构的构建,再扩展到并行算法、线程管理,最后还介绍了多线程代码的测试工作。
本书的附录部分还对C++11新语言特性中与多线程相关的项目进行了简要的介绍,并提供了C++11线程库的完整参考。
本书适合于需要深入了解C++多线程开发的读者,以及使用C++进行各类软件开发的开发人员、测试人员。
对于使用第三方线程库的读者,也可以从本书后面的章节中了解到相关的指引和技巧。
同时,本书还可以作为C++11线程库的参考工具书。
Web客户端追踪—浏览器指纹追踪
浏览器指纹追踪类似人的外貌和指纹,Web客户端(这里主要指浏览器)也有多种“外貌”信息和“指纹”信息,将这些信息综合分析计算后,可对客户端进行唯一性识别,进而锁定、追踪、了解网民行为和隐私数据。
Javascript 生成 uuid 函数
这个函数用最短的代码生成了非常有效的uuid,非常巧妙。短小精悍,一个字符都不多。Returns a random v4 UUID of the form xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx, where each x is replaced with a random hexadecimal digit from 0 to f, and y is replaced with a random hexadecimal digit from 8 to b.
《神经网络与深度学习》
神经网络和深度学习是一本免费的在线书。本书会教会你:
神经网络,一种美妙的受生物学启发的编程范式,可以让计算机从观测数据中进行学习。深度学习,一个强有力的用于神经网络学习的众多技术的集合
神经网络和深度学习目前给出了在图像识别、语音识别和自然语言处理领域中很多问题的最好解决方案。本书将会教你在神经网络和深度学习背后的众多核心概念。
《JS 函数式编程指南》中文版
这本书的主题是函数范式(functional paradigm),我们将使用 JavaScript 这个世界上最流行的函数式编程语言来讲述这一主题。有人可能会觉得选择 JavaScript 并不明智,因为当前的主流观点认为它是一门命令式(imperative)的语言,并不适合用来讲函数式。但我认为,这是学习函数式编程的最好方式
《深度学习》[中文版翻译]
这本书对各类读者都有一定用处,但我们主要是为两类受众对象而写的。其中 一类受众对象是学习机器学习的大学生(本科或研究生),包括那些已经开始职业 生涯的深度学习和人工智能研究者。另一类受众对象是没有机器学习或统计背景但 希望能快速地掌握这方面知识并在他们的产品或平台中使用深度学习的软件工程师。 深度学习在许多软件领域都已被证明是有用的,包括计算机视觉、语音和音频处理、 自然语言处理、机器人技术、生物信息学和化学、电子游戏、搜索引擎、网络广告和 金融。
为了最好地服务各类读者,我们将本书组织为三个部分。第一部分介绍基本的 数学工具和机器学习的概念。第二部分介绍最成熟的深度学习算法,这些技术基本 上已经得到解决。第三部分讨论某些具有展望性的想法,它们被广泛地认为是深度 学习未来的研究重点。
读者可以随意跳过不感兴趣或与自己背景不相关的部分。熟悉线性代数、概率 和基本机器学习概念的读者可以跳过第一部分,例如,当读者只是想实现一个能工 作的系统则不需要阅读超出第二部分的内容。为了帮助读者选择章节,图 1.6 展示了 这本书的高层组织结构的流程图。
OpenQuant策略开发入门(中文版)
本文档是用于指导用户如何为OpenQuant编写代码的。既讨论了策略框架的代码结构,也讨论了几个示例策略的代码实现,同时也谈到了用于实现策略的事件。
阅读完本文档,你应该对交易系统设计有个基本的认识,包括一些需要优先考虑的关键步骤和需要避免的错误。同时你也应该通过一些热门策略背后的理论对通用策略有个认识,也知道如何通过OpenQuant编写代码实现简单的策略。一旦你读完本文档,对于你来说去编写、回测自己第一个新策略也是很容易的。
文件夹加锁解锁工具
本工具可将win7系统内文件夹加锁,加锁后用户无法打开拷贝文件夹内容。注意:本工具没有加密功能,请不要用来保存重要商业信息。
使用方法:将文件夹拖放到该软件锁上,设置密码即可
解锁方法:将加锁文件夹拖放到软件锁上,输入解锁密码即可
图片混合压缩包,将文件隐藏在图片里
将压缩包变为一张图片,可达到隐藏文件的目的
QingNote(轻笔记)
对于个人来说,时间是最稀缺的资源,在学习知识的过程中能够我们必须考虑知识获取成本问题。面对互联网繁杂的信息,如何搜集整理信息成为我们必须解决的问题。信息是免费的,但毫无目标获取信息就无法将信息转化为知识。如果你用有限的时间去学习无限的知识,你将被“知识”淹没。学习任何领域的知识必须达到一定的“深度”,否则你的知识就是常识。而常识怎么可能带来你个人的竞争优势呢?
在这飞速变革的知识经济时代里,个人发展越来越依赖于个人竞争力。而个人竞争力的源泉则是个人知识力:个人知识的学习、保存、传递、使用和创新的能力。每个人都离不开个人知识力的培养和造。
利用QingNote(轻笔记)能够轻松帮你解决知识保存问题,让您花费更短的时间去搜集有用的信息,你甚至可以把Qing装进你的U盘中和朋友分享,你可以把数据库备份到网络硬盘里,这样你就可以随时随地访问你的数据库并搜集和分享知识。与其它”大而全”的笔记软件的风格有些不同,Qing笔记最大的特点就轻便、小巧、快速、免费、绿色!如果你追求的是一款纯粹的便携的资料管理软件,只关注笔记的录入与搜索而不需太多花哨功能的话,它绝对值得你一试!
密码管理工具
通常情况下我们每天都要用到各种账号密码,但是要记住那么多账号和密码是很不容易的事情。有时候我们忘记了账号、有时候忘记了密码给生活带来诸多烦恼。如果能有一个工具方便我们记录自己的账号(如身份证号、银行账号、网站注册账号)等信息,那将会多么方便。所有我开发了这么一款小软件来帮助自己记录账号密码信息,也方便大家一起使用。
注意:本软件可供多人同时使用,注册后请保存好与软件同目录下的你的个人文件,该文件加密储存,请妥善保管。
c语言 定时关机锁屏
不仅可以设计几点几分关机,而且能够设置倒计时关机。另外还有锁屏程序,有绚丽的锁屏效果
虚拟桌面VirtualDesktop
这个程序可以虚拟出9个桌面,纯绿色,体积小