问题描述
从同一个Tensor中取出的俩个相同size的张量重新赋值后,使用View进行变换时候,其中一个出现
view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Use reshape(...) instead.
提醒tensor的步长不同,使用
Tensor.reshape()
代替,其实这个确实可以解决问题,根据官方文档使用
Tensor.contiguous().view()
也同样可以解决,且之后的size与stride是相同的。
但是问题来了,为什么从同一个张量中取得的两个size相同的Tensor的stride却不同呢?
问题解决
tensor_org = torch.Tensor(1,3,4,4,6)
tensor3 = tensor_org[...<