bzoj1458 士兵占领

http://www.elijahqi.win/2017/11/24/bzoj1458-%e5%a3%ab%e5%85%b5%e5%8d%a0%e9%a2%86/
Description

有一个M * N的棋盘,有的格子是障碍。现在你要选择一些格子来放置一些士兵,一个格子里最多可以放置一个士兵,障碍格里不能放置士兵。我们称这些士兵占领了整个棋盘当满足第i行至少放置了Li个士兵, 第j列至少放置了Cj个士兵。现在你的任务是要求使用最少个数的士兵来占领整个棋盘。

Input

第一行两个数M, N, K分别表示棋盘的行数,列数以及障碍的个数。 第二行有M个数表示Li。 第三行有N个数表示Ci。 接下来有K行,每行两个数X, Y表示(X, Y)这个格子是障碍。

Output

输出一个数表示最少需要使用的士兵个数。如果无论放置多少个士兵都没有办法占领整个棋盘,输出”JIONG!” (不含引号)

Sample Input

4 4 4

1 1 1 1

0 1 0 3

1 4

2 2

3 3

4 3

Sample Output

4

数据范围

M, N <= 100, 0 <= K <= M * N

我不会如何用网络流去求最小的 那不妨 我们将问题转换一下 首先我们先验证一下是否每行每列 的最好情况可以满足要求 然后 我把每个能删掉的建边 从源点向 每一行建边

然后 权值为最大的可能-他需要每一行有多少士兵 然后如果这个是好点那么每行每列再连边权值为1 然后再从每一列向汇点建边 然后权值为列最大-列需要 然后跑最大流 统计 最大不需要战人的地方有多少 最后用总数一减即可
现在再总结看来这题应该是相当于一个二分图的匹配问题 因为最小不好搞 怎么办 我可以求最大 相当于我让最多的格子可以空出来 一个格子空出来对行对列造成的影响就是-1 看我在满足下界的条件下最多空几个格子用总可用一减即可


#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 110
#define inf 0x3f3f3f3f
using namespace std;
inline char gc(){
    static char now[1<<16],*T,*S;
    if (T==S){T=(S=now)+fread(now,1,1<<16,stdin);if (T==S) return EOF;}
    return *S++;
}
inline int read(){
    int x=0;char ch=gc();
    while (ch<'0'||ch>'9') ch=gc();
    while (ch<='9'&&ch>='0'){x=x*10+ch-'0';ch=gc();}
    return x;
}
struct node{
    int x,y,next,z;
}data[N*N+2*N];
bool mp[N][N];int num=1,t,h[N*N],n,m,l[N],c[N],lmax[N],cmax[N],level[N*N],k;
inline void insert1(int x,int y,int z){
    data[++num].y=y;data[num].z=z;data[num].next=h[x];h[x]=num;data[num].x=x;
    data[++num].y=x;data[num].z=0;data[num].next=h[y];h[y]=num;data[num].x=y;
}
inline bool bfs(){
    memset(level,0,sizeof(level));queue<int>q;level[0]=1;q.push(0);
    while (!q.empty()){
        int x=q.front();q.pop();
        for (int i=h[x];i;i=data[i].next){
            int y=data[i].y,z=data[i].z;
            if (level[y]||!z) continue;q.push(y);level[y]=level[x]+1;
            if (y==t) return 1;
        }
    }return 0;
}
int dfs(int x,int s){
    if (x==t) return s;int ss=s;
    for (int i=h[x];i;i=data[i].next){
        int y=data[i].y,z=data[i].z;
        if (level[x]+1==level[y]&&z){
            int xx=dfs(y,min(s,z));if (!xx) level[y]=0;
            s-=xx;data[i].z-=xx;data[i^1].z+=xx;if (!s) return ss;
        }
    }return ss-s;
}
int main(){
    freopen("bzoj1458.in","r",stdin);
    m=read();n=read();k=read();
    for (int i=1;i<=m;++i) l[i]=read(),lmax[i]=n;
    for (int i=1;i<=n;++i) c[i]=read(),cmax[i]=m;
    for (int i=1;i<=k;++i){
        int x=read(),y=read();
        mp[x][y]=1;lmax[x]--;cmax[y]--;
    }bool flag=0;
    for (int i=1;i<=m;++i) if (l[i]>lmax[i]) {flag=1;break;}if (flag) {printf("JIONG");return 0;}
    for (int i=1;i<=n;++i) if (c[i]>cmax[i]) {flag=1;break;}if (flag) {printf("JIONG");return 0;}
    for (int i=1;i<=m;++i) insert1(0,i,lmax[i]-l[i]);t=m+n+1;
    for (int i=1;i<=m;++i) 
        for (int j=1;j<=n;++j) if (!mp[i][j]) insert1(i,m+j,1);
    for (int j=1;j<=n;++j) insert1(j+m,t,cmax[j]-c[j]);int ans=0;
    //for (int i=2;i<=num;++i) printf("%d %d %d\n",data[i].x,data[i].y,data[i].z);
    while (bfs()) 
        ans+=dfs(0,inf);
    printf("%d",m*n-k-ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值