【bzoj2301&&luogu2522】[HAOI2011]Problem b

http://www.elijahqi.win/2017/07/02/bzoj2301/
题目描述
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。
输入输出格式
输入格式:

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

输出格式:

共n行,每行一个整数表示满足要求的数对(x,y)的个数

输入输出样例
输入样例#1:
2
2 5 1 5 1
1 5 1 5 2
输出样例#1:
14
3
说明
100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

题解:大部分是抄xtx大牛的…结合一部分自己的理解

1、先用容斥原理去除范围的下界 即考虑gcd(i,j)=k(1<=i<=n 1<=j<=m)的个数

用莫比乌斯函数的性质把求和的式子换掉

其中,更换求和指标,

考虑式子

floor(n/kd)至多有2×sqrt(n/k)种

floor(n/kd)floor(m/kd)至多2×sqrt(n/k)+2*sqrt(m/k)种

提取相同的floor(n/kd)floor(m/kd)公因数,Mobius函数部分是一个区间和

复杂度 O(N*sqrt(N))

关于莫比乌斯函数值的求解方法:

可以证明每个合数只会被其最小质因子筛去,因此复杂度为线性。

mu[1]=1;int tot=0;
    for (int i=2;i<=N;++i){
        if (!not_prime[i]){
            prime[++tot]=i;
            mu[i]=-1;
        }
        for (int j=1;prime[j]*i<=N;++j){
            not_prime[prime[j]*i]=1;
            if (i%prime[j]==0){
                mu[prime[j]*i]=0;break;//参照mubius的其他情况
            }
            mu[prime[j]*i]=-mu[i];//prime[j]*i可以分解成不同质数
        }
    }

如果能够充分挖掘的性质,则可以用线性筛在O(n)时间内预处理。
关键在于对下面三种情况分别进行处理: P=prime[];x=i;
1.是质数,求
2.是质数,,求
3.是质数,,求
第1种情况往往比较简单。如果能证明是积性函数,则容易知道第2种情况是,剩下只要解决第3种情况的递推就够了。


#include<cstdio>
#include<cstring>
#define N 55000
inline int read(){
    int x=0;char ch=getchar();
    while (ch<'0'||ch>'9') ch=getchar();
    while (ch<='9'&&ch>='0'){x=x*10+ch-'0';ch=getchar();}
    return x;
}
int n,prime[N],not_prime[N],mu[N],sum[N];
inline int swap(int &a,int &b){
    int t=a;a=b;b=t;
}
inline int min(int a,int b){
    return a<b?a:b;
}
inline int calc(int nn,int mm){
    if (nn>mm)swap(nn,mm);
    int last=0,ans1=0;
    for (int i=1;i<=nn;i=last+1){
        last=min(nn/(nn/i),mm/(mm/i));
        ans1+=(sum[last]-sum[i-1])*(nn/i)*(mm/i);
    }
    return ans1;
}
int main(){
    freopen("2522.in","r",stdin);
    freopen("2522.out","w",stdout);
    n=read();
    //o(n)求mobius
    mu[1]=1;int tot=0;memset(not_prime,0,sizeof(not_prime));
    for (int i=2;i<=N;++i){
        if (!not_prime[i]){
            prime[++tot]=i;
            mu[i]=-1;
        }
        for (int j=1;prime[j]*i<=N;++j){
            not_prime[prime[j]*i]=1;
            if (i%prime[j]==0){
                mu[prime[j]*i]=0;break;
            }
            mu[prime[j]*i]=-mu[i];
        }
    } 
//  for (int i=1;i<=N;++i) printf("%d\n",mu[i]);
    for (int i=1;i<=N;++i) sum[i]=sum[i-1]+mu[i];
    while (n--){
        int a,b,c,d,k;
        a=read();b=read();c=read();d=read();k=read();a--;c--;
        a/=k;b/=k;c/=k;d/=k;
        int ans=calc(b,d)-calc(a,d)-calc(b,c)+calc(a,c);
        printf("%d\n",ans);
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值