bzoj3343 教主的魔法

18 篇文章 0 订阅

http://www.elijahqi.win/2018/03/02/bzoj3343/
Description

教主最近学会了一种神奇的魔法,能够使人长高。于是他准备演示给XMYZ信息组每个英雄看。于是N个英雄们又一次聚集在了一起,这次他们排成了一列,被编号为1、2、……、N。
每个人的身高一开始都是不超过1000的正整数。教主的魔法每次可以把闭区间[L, R](1≤L≤R≤N)内的英雄的身高全部加上一个整数W。(虽然L=R时并不符合区间的书写规范,但我们可以认为是单独增加第L(R)个英雄的身高)
CYZ、光哥和ZJQ等人不信教主的邪,于是他们有时候会问WD闭区间 [L, R] 内有多少英雄身高大于等于C,以验证教主的魔法是否真的有效。
WD巨懒,于是他把这个回答的任务交给了你。

Input

   第1行为两个整数N、Q。Q为问题数与教主的施法数总和。
   第2行有N个正整数,第i个数代表第i个英雄的身高。
   第3到第Q+2行每行有一个操作:

(1) 若第一个字母为“M”,则紧接着有三个数字L、R、W。表示对闭区间 [L, R] 内所有英雄的身高加上W。
(2) 若第一个字母为“A”,则紧接着有三个数字L、R、C。询问闭区间 [L, R] 内有多少英雄的身高大于等于C。

Output

   对每个“A”询问输出一行,仅含一个整数,表示闭区间 [L, R] 内身高大于等于C的英雄数。

Sample Input

5 3
1 2 3 4 5
A 1 5 4
M 3 5 1
A 1 5 4
Sample Output

2
3
HINT

【输入输出样例说明】
原先5个英雄身高为1、2、3、4、5,此时[1, 5]间有2个英雄的身高大于等于4。教主施法后变为1、2、4、5、6,此时[1, 5]间有3个英雄的身高大于等于4。

【数据范围】
对30%的数据,N≤1000,Q≤1000。
对100%的数据,N≤1000000,Q≤3000,1≤W≤1000,1≤C≤1,000,000,000。
同理 每个区间内排序查找的时候二分查找即可 如果区间加法 那就打懒标记区间加即可
如果在一个区间内暴力加然后重构即可 查询的时候在零散的区间暴力查询即可

#include<cmath>
#include<cstdio>
#include<algorithm>
#define N 1100000
using namespace std;
inline char gc(){
    static char now[1<<16],*S,*T;
    if (T==S){T=(S=now)+fread(now,1,1<<16,stdin);if (T==S) return EOF;}
    return *S++;
}
inline int read(){
    int x=0,f=1;char ch=gc();
    while(ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=gc();}
    while(ch<='9'&&ch>='0') x=x*10+ch-'0',ch=gc();
    return x*f;
}
int ta[N],q,n,a[N],b[N],left[N],right[N],s[1010],nn;
inline void rebuild(int id){
    for (int i=left[id];i<=right[id];++i) ta[i]=a[i];
    sort(ta+left[id],ta+right[id]+1);
}
inline void add(int l,int r,int w){
    if (b[l]==b[r]) {for (int i=l;i<=r;++i) a[i]+=w;rebuild(b[l]);return;}
    for (int i=b[l]+1;i<b[r];++i) s[i]+=w;
    for (int i=l;i<=right[b[l]];++i) a[i]+=w;rebuild(b[l]);
    for (int i=left[b[r]];i<=r;++i) a[i]+=w;rebuild(b[r]);
}
inline int query(int l,int r,int w){
    int tmp=0;
    if (b[l]==b[r]){for (int i=l;i<=r;++i) tmp+=((a[i]+s[b[l]])>=w);return tmp;}
    for (int i=l;i<=right[b[l]];++i) tmp+=((a[i]+s[b[l]])>=w);
    for (int i=left[b[r]];i<=r;++i) tmp+=((a[i]+s[b[r]])>=w);
    for (int i=b[l]+1;i<b[r];++i){ 
        int len=lower_bound(ta+left[i],ta+right[i]+1,w-s[i])-ta-left[i];tmp+=nn-len;
    }return tmp;
}
int main(){
    freopen("bzoj3343.in","r",stdin);
    n=read();q=read();nn=sqrt(n);
    for (int i=1;i<=(n-1)/nn+1;++i)left[i]=(i-1)*nn+1,right[i]=min(left[i]+nn-1,n);
    for (int i=1;i<=n;++i) {
        a[i]=read();b[i]=(i-1)/nn+1;ta[i]=a[i];
    }for (int i=1;i<=b[n];++i) sort(ta+left[i],ta+right[i]+1);
    while(q--){
        char ch=gc();while(ch!='A'&&ch!='M') ch=gc();
        int l=read(),r=read(),w=read();
        if (ch=='A') printf("%d\n",query(l,r,w));
        if (ch=='M') add(l,r,w);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值