http://www.elijahqi.win/2018/03/08/bzoj2157/
Description
Ray 乐忠于旅游,这次他来到了T 城。T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥连接。为了方便游客到达每个景点但又为了节约成本,T 城的任意两个景点之间有且只有一条路径。换句话说, T 城中只有N − 1 座桥。Ray 发现,有些桥上可以看到美丽的景色,让人心情愉悦,但有些桥狭窄泥泞,令人烦躁。于是,他给每座桥定义一个愉悦度w,也就是说,Ray 经过这座桥会增加w 的愉悦度,这或许是正的也可能是负的。有时,Ray 看待同一座桥的心情也会发生改变。现在,Ray 想让你帮他计算从u 景点到v 景点能获得的总愉悦度。有时,他还想知道某段路上最美丽的桥所提供的最大愉悦度,或是某段路上最糟糕的一座桥提供的最低愉悦度。
Input
输入的第一行包含一个整数N,表示T 城中的景点个数。景点编号为 0…N − 1。接下来N − 1 行,每行三个整数u、v 和w,表示有一条u 到v,使 Ray 愉悦度增加w 的桥。桥的编号为1…N − 1。|w| <= 1000。输入的第N + 1 行包含一个整数M,表示Ray 的操作数目。接下来有M 行,每行描述了一个操作,操作有如下五种形式: C i w,表示Ray 对于经过第i 座桥的愉悦度变成了w。 N u v,表示Ray 对于经过景点u 到v 的路径上的每一座桥的愉悦度都变成原来的相反数。 SUM u v,表示询问从景点u 到v 所获得的总愉悦度。 MAX u v,表示询问从景点u 到v 的路径上的所有桥中某一座桥所提供的最大愉悦度。 MIN u v,表示询问从景点u 到v 的路径上的所有桥中某一座桥所提供的最小愉悦度。测试数据保证,任意时刻,Ray 对于经过每一座桥的愉悦度的绝对值小于等于1000。
Output
对于每一个询问(操作S、MAX 和MIN),输出答案。
Sample Input
3
0 1 1
1 2 2
8
SUM 0 2
MAX 0 2
N 0 1
SUM 0 2
MIN 0 2
C 1 3
SUM 0 2
MAX 0 2
Sample Output
3
2
1
-1
5
3
HINT
一共有10 个数据,对于第i (1 <= i <= 10) 个数据, N = M = i * 2000。
Source
板子题 注意细节在update的时候注意判断自己是否是边节点
#include<cstdio>
#include<algorithm>
#define N 44000
#define inf 0x3f3f3f3f
using namespace std;
inline char gc(){
static char now[1<<16],*S,*T;
if (T==S){T=(S=now)+fread(now,1,1<<16,stdin);if (T==S) return EOF;}
return *S++;
}
inline int read(){
int x=0,f=1;char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=gc();}
while(ch<='9'&&ch>='0') x=x*10+ch-'0',ch=gc();
return x*f;
}
inline void read_s(char *op){
int x=0;char ch=gc();while(ch<'A'||ch>'Z') ch=gc();
while(ch<='Z'&&ch>='A') op[x++]=ch,ch=gc();
}
int n,fa[N],c[N][2],v[N],mn[N],mx[N],q[N],top,sum[N];
bool tag[N],rev[N];
inline bool isroot(int x){
return c[fa[x]][0]!=x&&c[fa[x]][1]!=x;
}
inline void update(int x){
int l=c[x][0],r=c[x][1];
sum[x]=v[x]+sum[l]+sum[r];
mx[x]=max(mx[l],mx[r]);mn[x]=min(mn[l],mn[r]);
if (x>n) mx[x]=max(mx[x],v[x]),mn[x]=min(mn[x],v[x]);
}
inline void revs(int x){
sum[x]=-sum[x];swap(mn[x],mx[x]);v[x]=-v[x];
mn[x]=-mn[x];mx[x]=-mx[x];tag[x]^=1;
}
inline void pushdown(int x){
int l=c[x][0],r=c[x][1];
if (tag[x]) tag[x]=0,revs(l),revs(r);
if (rev[x]){
swap(c[x][0],c[x][1]);rev[x]^=1;
rev[l]^=1;rev[r]^=1;
}
}
inline void rotate(int x){
int y=fa[x],z=fa[y],l=c[y][1]==x,r=l^1;
if (!isroot(y)) c[z][c[z][1]==y]=x;
fa[c[x][r]]=y;fa[y]=x;fa[x]=z;
c[y][l]=c[x][r];c[x][r]=y;update(y);update(x);
}
inline void splay(int x){
q[top=1]=x;for (int i=x;!isroot(i);i=fa[i]) q[++top]=fa[i];
while(top) pushdown(q[top--]);
while(!isroot(x)){
int y=fa[x],z=fa[y];
if (!isroot(y)){
if (c[y][0]==x^c[z][0]==y) rotate(x);else rotate(y);
}rotate(x);
}
}
inline void access(int x){for (int t=0;x;t=x,x=fa[x]) splay(x),c[x][1]=t,update(x);}
inline void makeroot(int x){access(x);splay(x);rev[x]^=1;}
inline void link(int x,int y){makeroot(x);fa[x]=y;}
inline void change(int x,int y){splay(x);
v[x]=y;
update(x);}
inline int qs(int x,int y){makeroot(x);access(y);splay(y);return sum[y];}
inline int qx(int x,int y){makeroot(x);access(y);splay(y);return mx[y];}
inline int qi(int x,int y){makeroot(x);access(y);splay(y);return mn[y];}
inline void solve(int x,int y){makeroot(x);access(y);splay(y);revs(y);}
int main(){
freopen("bzoj2157.in","r",stdin);
n=read();for (int i=0;i<=n;++i) mx[i]=-inf,mn[i]=inf;
for (int i=1;i<n;++i){
int x=read()+1,y=read()+1,z=read();link(x,i+n);link(y,i+n);
v[i+n]=mx[i+n]=mn[i+n]=z;
}int m=read();
while(m--){
char op[5];read_s(op);int x=read(),y=read();//printf("%s\n",op);
if (op[0]=='C'){change(x+n,y);continue;}
if (op[0]=='S'){printf("%d\n",qs(x+1,y+1));continue;}
if (op[0]=='N'){solve(x+1,y+1);continue;}
if (op[1]=='A'){printf("%d\n",qx(x+1,y+1));}
if (op[1]=='I'){printf("%d\n",qi(x+1,y+1));}
}
return 0;
}