http://www.elijahqi.win/archives/2838
Description
给出一个由小写英文字母组成的字符串S,再给出q个询问,要求回答S某个子串的最短循环节。
如果字符串B是字符串A的循环节,那么A可以由B重复若干次得到。
Input
第一行一个正整数n (n<=500,000),表示S的长度。
第二行n个小写英文字母,表示字符串S。
第三行一个正整数q (q<=2,000,000),表示询问个数。
下面q行每行两个正整数a,b (1<=a<=b<=n),表示询问字符串S[a..b]的最短循环节长度。
Output
依次输出q行正整数,第i行的正整数对应第i个询问的答案。
Sample Input
8
aaabcabc
3
1 3
3 8
4 8
Sample Output
1
3
5
HINT
Source
鸣谢 jiangzoi&oimaster
n是[l,r]这一段的循环节的充要条件是[l,r-n]和[l+n,r]相同 且n是长度的约数
如果枚举长度区间的所有约数是sqrt(n)的复杂度 考虑如何优化
有一条性质:若len是循环节 则k*len|n均是循环节
那么我们可以首先将每次询问 log时间内分解质因数 然后检查除以这个质因数之后这个是否是循环节 然后因为每次除的都是质因数可以保证整体还是个循环节
那么这个log时间分解质因数就线性筛即可
#include<cstdio>
#include<cctype>
#include<algorithm>
#define N 500050
#define g1 131
#define ll unsigned long long
using namespace std;
inline char gc(){
static char now[1<<16],*S,*T;
if (T==S){T=(S=now)+fread(now,1,1<<16,stdin);if (T==S) return EOF;}
return *S++;
}
inline int read(){
int x=0,f=1;char ch=gc();
while(!isdigit(ch)) {if (ch=='-') f=-1;ch=gc();}
while(isdigit(ch)) x=x*10+ch-'0',ch=gc();
return x*f;
}
char s[N];int q[N],top,n,prime[N],nxt[N];ll hs[N],p[N]; bool not_prime[N];
inline bool check(int l1,int r1,int l2,int r2){
return (hs[r1]-hs[l1-1]*p[r1-l1+1])==(hs[r2]-hs[l2-1]*p[r2-l2+1]);
}
int main(){
freopen("bzoj2795.in","r",stdin);
scanf("%d%s",&n,s+1);int Q=read();p[0]=1;int tot=0;
for (int i=1;i<=n;++i) hs[i]=hs[i-1]*g1+s[i],p[i]=p[i-1]*g1;
for (int i=2;i<=n;++i){
if (!not_prime[i]) prime[++tot]=i,nxt[i]=i;
for (int j=1;prime[j]*i<=n;++j){
not_prime[prime[j]*i]=1;nxt[i*prime[j]]=prime[j];
if (i%prime[j]==0) break;
}
}
while(Q--){
int l=read(),r=read(),len=r-l+1;top=0;
while(len!=1) q[++top]=nxt[len],len/=nxt[len];len=r-l+1;
for (int i=1;i<=top;++i){
int t=len/q[i];
if (check(l+t,r,l,r-t)) len=len/q[i];
}printf("%d\n",len);
}
return 0;
}