bzoj 2795: [Poi2012]A Horrible Poem (hash+数论)

17 篇文章 0 订阅

2795: [Poi2012]A Horrible Poem

Time Limit: 50 Sec   Memory Limit: 128 MB
Submit: 448   Solved: 219
[ Submit][ Status][ Discuss]

Description


给出一个由小写英文字母组成的字符串S,再给出q个询问,要求回答S某个子串的最短循环节。
如果字符串B是字符串A的循环节,那么A可以由B重复若干次得到。

Input

 

第一行一个正整数n (n<=500,000),表示S的长度。
第二行n个小写英文字母,表示字符串S。
第三行一个正整数q (q<=2,000,000),表示询问个数。
下面q行每行两个正整数a,b (1<=a<=b<=n),表示询问字符串S[a..b]的最短循环节长度。

Output

依次输出q行正整数,第i行的正整数对应第i个询问的答案。

Sample Input

8
aaabcabc
3
1 3
3 8
4 8

Sample Output

1
3
5

HINT

Source

[ Submit][ Status][ Discuss]

题解:hash+数论

首先需要知道,如果一个子串是循环的,那么如果x是循环节长度,那么[l,r-x]与[l+x,r]两个区间的hash的值一定是相同。所以我们可以用这种方式O(1)的判断一个长度是否是循环节。

那么循环节的长度必然是区间长度的一个约数,我们可以利用线性筛求出每次数最小的质因子,然后O(logn)的分解质因数,刚开始想利用分解的质因数构造出所有约数,本机1.7s大数据,但是交上去TLE了。

有一点就是如果k是循环节,那么k*x如果也是n的约数的话,也是循环节。这个反过来也是成立的,所以我们可以在分解质因数的时候,每次找到一个长度的循环节,就将需要计算的判断的长度不断的减短,直到不能减为止,最后得到的长度其实就是最短循环节。

这样总时间复杂度为O(nlogn)

#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<cstdio>
#define N 500003
#define ul unsigned long long 
#define p 2000001001
using namespace std;
int n,m,a[N],prime[N],pd[N],minp[N],num[N],size[N],cnt,ans[N],k,x,y,minn;
ul base[N],hash[N];
char s[N];
void calc()
{
	for (int i=2;i<=500000;i++) {
		if (!pd[i]) {
			prime[++prime[0]]=i; minp[i]=i;
		}
		for (int j=1;j<=prime[0];j++) {
			if (i*prime[j]>500000) break;
			pd[i*prime[j]]=1; minp[i*prime[j]]=prime[j];
			if (i%prime[j]==0) break;
		}
	}
}
bool check(int l,int r,int x)
{
	int a=l,b=r-x; int a1=l+x; int b1=r;
	ul t1=hash[b]-hash[a-1];
	ul t2=hash[b1]-hash[a1-1];
	if (t1*base[x]==t2) return true;
	else return false;
}
void solve(int x1)
{
	int len=x1;
	while (x1!=1) {
		num[++cnt]=minp[x1]; 
		int t=minp[x1];
		while (len%t==0&&check(x,y,len/t)) len/=t;
		while (x1%t==0) x1/=t;
	}
	minn=len;
}
int main()
{
	freopen("a.in","r",stdin);
	freopen("my.out","w",stdout);
	calc();
	scanf("%d\n",&n);
	for (int i=1;i<=n;i++) s[i]=getchar();
	base[0]=1;
	for(int i=1;i<=n;i++)  base[i]=base[i-1]*p;
	for (int i=1;i<=n;i++) hash[i]=hash[i-1]+s[i]*base[i];
	scanf("%d",&m);
	for (int i=1;i<=m;i++) {
		scanf("%d%d",&x,&y);
		minn=y-x+1; int len=minn;
		cnt=0; solve(len);
		printf("%d\n",minn);
	} 
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值