2795: [Poi2012]A Horrible Poem
Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 448 Solved: 219
[ Submit][ Status][ Discuss]
Description
给出一个由小写英文字母组成的字符串S,再给出q个询问,要求回答S某个子串的最短循环节。
如果字符串B是字符串A的循环节,那么A可以由B重复若干次得到。
Input
第一行一个正整数n (n<=500,000),表示S的长度。
第二行n个小写英文字母,表示字符串S。
第三行一个正整数q (q<=2,000,000),表示询问个数。
下面q行每行两个正整数a,b (1<=a<=b<=n),表示询问字符串S[a..b]的最短循环节长度。
Output
依次输出q行正整数,第i行的正整数对应第i个询问的答案。
Sample Input
8
aaabcabc
3
1 3
3 8
4 8
aaabcabc
3
1 3
3 8
4 8
Sample Output
1
3
5
3
5
HINT
Source
题解:hash+数论
首先需要知道,如果一个子串是循环的,那么如果x是循环节长度,那么[l,r-x]与[l+x,r]两个区间的hash的值一定是相同。所以我们可以用这种方式O(1)的判断一个长度是否是循环节。
那么循环节的长度必然是区间长度的一个约数,我们可以利用线性筛求出每次数最小的质因子,然后O(logn)的分解质因数,刚开始想利用分解的质因数构造出所有约数,本机1.7s大数据,但是交上去TLE了。
有一点就是如果k是循环节,那么k*x如果也是n的约数的话,也是循环节。这个反过来也是成立的,所以我们可以在分解质因数的时候,每次找到一个长度的循环节,就将需要计算的判断的长度不断的减短,直到不能减为止,最后得到的长度其实就是最短循环节。
这样总时间复杂度为O(nlogn)
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<cstdio>
#define N 500003
#define ul unsigned long long
#define p 2000001001
using namespace std;
int n,m,a[N],prime[N],pd[N],minp[N],num[N],size[N],cnt,ans[N],k,x,y,minn;
ul base[N],hash[N];
char s[N];
void calc()
{
for (int i=2;i<=500000;i++) {
if (!pd[i]) {
prime[++prime[0]]=i; minp[i]=i;
}
for (int j=1;j<=prime[0];j++) {
if (i*prime[j]>500000) break;
pd[i*prime[j]]=1; minp[i*prime[j]]=prime[j];
if (i%prime[j]==0) break;
}
}
}
bool check(int l,int r,int x)
{
int a=l,b=r-x; int a1=l+x; int b1=r;
ul t1=hash[b]-hash[a-1];
ul t2=hash[b1]-hash[a1-1];
if (t1*base[x]==t2) return true;
else return false;
}
void solve(int x1)
{
int len=x1;
while (x1!=1) {
num[++cnt]=minp[x1];
int t=minp[x1];
while (len%t==0&&check(x,y,len/t)) len/=t;
while (x1%t==0) x1/=t;
}
minn=len;
}
int main()
{
freopen("a.in","r",stdin);
freopen("my.out","w",stdout);
calc();
scanf("%d\n",&n);
for (int i=1;i<=n;i++) s[i]=getchar();
base[0]=1;
for(int i=1;i<=n;i++) base[i]=base[i-1]*p;
for (int i=1;i<=n;i++) hash[i]=hash[i-1]+s[i]*base[i];
scanf("%d",&m);
for (int i=1;i<=m;i++) {
scanf("%d%d",&x,&y);
minn=y-x+1; int len=minn;
cnt=0; solve(len);
printf("%d\n",minn);
}
}