http://www.elijahqi.win/archives/2976
题目描述
公元2089年6月4日,在经历了17年零3个月的漫长旅行后,“格纳格鲁一号”载人火箭返回舱终于安全着陆。此枚火箭由美国国家航空航天局(NASA)研制发射,行经火星、金星、土卫六、木卫二、谷神星、“张衡星”等23颗太阳系星球,并最终在小行星“杰森星”探寻到了地外生命。宇航员在“杰森星”地表岩层下45.70米位置发现一批珍贵的活体生命样本,并将其带回检测。在带回的活体样本中,最吸引人的当属这些来自外星的千足虫了。这些虫子身躯纤长,身体分为若干节。受到触碰时,会将身体卷曲成圆环形,间隔一段时间后才会复原活动。
有趣的还不止如此。研究人员发现,这些虫子的足并不像地球千足虫成对出现、总共偶数条——它们每节身体下方都有着不定数量的足,但足的总数一定是奇数条!虽然从外观难以区分二者,但通过统计足的数目,科学家们就能根据奇偶性判断出千足虫所属的星球。
作为J国派去NASA的秘密间谍,你希望参加这次研究活动以掌握进一步的情报,而NASA选拔的研究人员都是最优秀的科学家。于是NASA局长Charles Bolden出了一道难题来检测你的实力:
现在你面前摆有1…N编号的N只千足虫,你的任务是鉴定每只虫子所属的星球,但不允许亲自去数它们的足。Charles每次会在这N只千足虫中选定若干只放入“昆虫点足机”(the Insect Feet Counter, IFC)中,“点足机”会自动统计出其内所有昆虫足数之和。Charles会将这个和数mod 2的结果反馈给你,同时告诉你一开始放入机器中的是哪几只虫子。他的这种统计操作总共进行M次,而你应当尽早得出鉴定结果。
假如在第K次统计结束后,现有数据就足以确定每只虫子的身份,你就还应将这个K反馈给Charles,此时若K<M,则表明那后M-K次统计并非必须的。
如果根据所有M次统计数据还是无法确定每只虫子身份,你也要跟Charles讲明:就目前数据会存在多个解。
输入输出格式
输入格式:
输入文件insect.in第一行是两个正整数N, M。
接下来M行,按顺序给出Charles这M次使用“点足机”的统计结果。每行包含一个“01”串和一个数字,用一个空格隔开。“01”串按位依次表示每只虫子是否被放入机器:如果第i个字符是“0”则代表编号为i的虫子未被放入,“1”则代表已被放入。后面跟的数字是统计的昆虫足数mod 2的结果。
由于NASA的实验机器精确无误,保证前后数据不会自相矛盾。即给定数据一定有解。
输出格式:
输出文件insect.out在给定数据存在唯一解时有N+1行,第一行输出一个不超过M的正整数K,表明在第K次统计结束后就可以确定唯一解;接下来N行依次回答每只千足虫的身份,若是奇数条足则输出“?y7M#”(火星文),偶数条足输出“Earth”。如果输入数据存在多解,输出“Cannot Determine”。
所有输出均不含引号,输出时请注意大小写。
输入输出样例
输入样例#1: 复制
3 5 011 1 110 1 101 0 111 1 010 1
输出样例#1: 复制
4 Earth ?y7M# Earth
输入样例#2: 复制
5 7 01100 1 11000 1 10100 0 11100 1 00011 1 00000 0 11111 0
输出样例#2: 复制
Cannot Determine
说明
对于每一个测试点,如果你的输出文件与答案文件完全相同,该测试点得满分;
否则,对于存在唯一解的测试点,如果你正确回答所有千足虫的身份,将得到50%的分数;
其他情况,该测试点得零分。
【数据规模和约定】
对于20%的数据,满足N=M≤20;
对于40%的数据,满足N=M≤500;
对于70%的数据,满足N≤500,M≤1,000;
对于100%的数据,满足N≤1,000,M≤2,000。
高斯消元 因为都是0,1所以用bitset减小复杂度
注意在如果这一位是0 然后后面也没有的情况下是无解的
#include<cstdio>
#include<bitset>
#include<algorithm>
#define N 1100
using namespace std;
inline char gc(){
static char now[1<<16],*S,*T;
if (T==S){T=(S=now)+fread(now,1,1<<16,stdin);if (T==S) return EOF;}
return *S++;
}
inline int read(){
int x=0,f=1;char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=gc();}
while(ch<='9'&&ch>='0') x=x*10+ch-'0',ch=gc();
return x*f;
}
bitset<N> a[N<<1];
inline void read_s(int id){
int op=0;char ch=gc();while(ch!='0'&&ch!='1') ch=gc();
while(ch<='1'&&ch>='0') a[id][++op]=ch-'0',ch=gc();
}
int n,m,k;bool flag,ans[N];
inline void gauss(){
for (int i=1,j;i<=n;++i){int owo=i;
if(!a[i][i]){
for (j=i+1;j<=m;++j) if (a[j][i]) {owo=j;break;}
if (owo==i) {flag=1;return;}swap(a[i],a[owo]);
}
for (j=i+1;j<=m;++j) if (a[j][i]) a[j]^=a[i];k=max(k,owo);
}
for (int i=n;i;--i){
int tmp=a[i][n+1];
for (int j=i+1;j<=n;++j)
if (a[i][j]) tmp^=ans[j];
a[i][n+1]=tmp;ans[i]=a[i][n+1];
}
}
int main(){
freopen("bzoj1923.in","r",stdin);
n=read();m=read();
for (int i=1;i<=m;++i) read_s(i),a[i][n+1]=read();gauss();
if (flag) {puts("Cannot Determine");return 0;}printf("%d\n",k);
for (int i=1;i<=n;++i) if (ans[i]) puts("?y7M#");else puts("Earth");
return 0;
}