bzoj4034&luogu3178 [HAOI2015]树上操作

http://www.elijahqi.win/archives/803
题目描述

有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a 。操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。操作 3 :询问某个节点 x 到根的路径中所有点的点权和。

输入输出格式

输入格式:

第一行包含两个整数 N, M 。表示点数和操作数。接下来一行 N 个整数,表示树中节点的初始权值。接下来 N-1 行每行三个正整数 fr, to , 表示该树中存在一条边 (fr, to) 。再接下来 M 行,每行分别表示一次操作。其中第一个数表示该操作的种类( 1-3 ) ,之后接这个操作的参数( x 或者 x a ) 。

输出格式:

对于每个询问操作,输出该询问的答案。答案之间用换行隔开。

输入输出样例

输入样例#1:

5 5
1 2 3 4 5
1 2
1 4
2 3
2 5
3 3
1 2 1
3 5
2 1 2
3 3
输出样例#1:

6
9
13
说明

对于 100% 的数据, N,M<=100000 ,且所有输入数据的绝对值都不

会超过 10^6 。

模板题:同zjoi2008树的统计

子树修改那个可以id[x]+size[x]-1;因为这肯定是连续区间

#include<cstdio>
#define N 110000
#define LL long long
inline int read(){
    int x=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=getchar();}
    while (ch<='9'&&ch>='0'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
struct node{
    int y,next;
}data[N<<1];
struct node1{
    int l,r,left,right;LL sum,lazy;
}tree[N<<2];
int num,size[N],dep[N],fa[N],w[N],id[N],a[N],son[N],h[N],tp[N],n,m,root;
void dfs1(int x){
    size[x]=1;
    for (int i=h[x];i;i=data[i].next){
        int y=data[i].y;
        if (fa[x]==y) continue;
        fa[y]=x;dep[y]=dep[x]+1;dfs1(y);size[x]+=size[y];
        if (size[y]>size[son[x]]) son[x]=y;
    }
}
void dfs2(int x,int top){
    id[x]=++num;tp[x]=top;w[num]=a[x];
    if (son[x]) dfs2(son[x],top);
    for (int i=h[x];i;i=data[i].next){
        int y=data[i].y;
        if (y==fa[x]||y==son[x]) continue;
        dfs2(y,y);
    }
}
inline void update(int x){
    int l=tree[x].left,r=tree[x].right;
    tree[x].sum=tree[l].sum+tree[r].sum;
}
void build(int &x,int l,int r){
    x=++num;tree[x].l=l;tree[x].r=r;
    if (l==r) {tree[x].sum=w[l];return;}
    int mid=l+r>>1;
    build(tree[x].left,l,mid);build(tree[x].right,mid+1,r);
    update(x);
}
inline void pushdown(int x){
    if (!tree[x].lazy) return;
    int l=tree[x].left,r=tree[x].right;
    LL lazy=tree[x].lazy;
    tree[l].lazy+=lazy;tree[r].lazy+=lazy;
    tree[l].sum+=(LL)(tree[l].r-tree[l].l+1)*lazy;
    tree[r].sum+=(LL)(tree[r].r-tree[r].l+1)*lazy;
    tree[x].lazy=0;
}
void change(int x,int l1,int r1,int v){
    if (l1<=tree[x].l&&r1>=tree[x].r){
        tree[x].sum+=(LL)(tree[x].r-tree[x].l+1)*v;tree[x].lazy+=v;
        return;
    }
    int mid=(tree[x].l+tree[x].r)>>1;pushdown(x);
    if (l1<=mid) change(tree[x].left,l1,r1,v);
    if (r1>mid) change(tree[x].right,l1,r1,v);
    update(x);
}
LL query(int x,int l1,int r1){
    if (l1<=tree[x].l&&r1>=tree[x].r) return tree[x].sum;
    int mid=(tree[x].l+tree[x].r)>>1;pushdown(x);LL tmp1=0,tmp2=0;
    if (l1<=mid) tmp1=query(tree[x].left,l1,r1);
    if (r1>mid) tmp2=query(tree[x].right,l1,r1);
    return tmp1+tmp2;
}
int main(){
    freopen("3178.in","r",stdin);
    n=read();m=read();
    for (int i=1;i<=n;++i) a[i]=read();
    for (int i=1;i<n;++i){
        int x=read(),y=read();
        data[++num].y=y;data[num].next=h[x];h[x]=num;
        data[++num].y=x;data[num].next=h[y];h[y]=num;       
    }dep[1]=1;num=0;
    dfs1(1);dfs2(1,1);num=0;
    build(root,1,n);
    for (int i=1;i<=m;++i){
        int op=read();
        if (op==1){
            int x=read(),v=read();
            change(root,id[x],id[x],v);continue;
        }
        if (op==2){
            int x=read(),v=read();
            change(root,id[x],id[x]+size[x]-1,v);continue;
        }
        if (op==3){
            int x=read();LL tmp=0;
            while (tp[x]!=1){
                tmp+=query(root,id[tp[x]],id[x]);
                x=fa[tp[x]];
            }
            printf("%lld\n",tmp+query(root,1,id[x]));
        }
    }
    return 0;
}
阅读更多
版权声明:辣鸡蒟蒻的blog https://blog.csdn.net/elijahqi/article/details/79945725
个人分类: 树链剖分
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭