http://www.elijahqi.win/archives/828
题目描述
Mayan puzzle是最近流行起来的一个游戏。游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上。游戏通关是指在规定的步数内消除所有的方块,消除方块的规则如下:
1 、每步移动可以且仅可以沿横向(即向左或向右)拖动某一方块一格:当拖动这一方块时,如果拖动后到达的位置(以下称目标位置)也有方块,那么这两个方块将交换位置(参见输入输出样例说明中的图6 到图7 );如果目标位置上没有方块,那么被拖动的方块将从原来的竖列中抽出,并从目标位置上掉落(直到不悬空,参见下面图1 和图2);
2 、任一时刻,如果在一横行或者竖列上有连续三个或者三个以上相同颜色的方块,则它们将立即被消除(参见图1 到图3)。
注意:
a) 如果同时有多组方块满足消除条件,几组方块会同时被消除(例如下面图4 ,三个颜色为1 的方块和三个颜色为 2 的方块会同时被消除,最后剩下一个颜色为 2 的方块)。
b) 当出现行和列都满足消除条件且行列共享某个方块时,行和列上满足消除条件的所有方块会被同时消除(例如下面图5 所示的情形,5 个方块会同时被消除)。
3 、方块消除之后,消除位置之上的方块将掉落,掉落后可能会引起新的方块消除。注意:掉落的过程中将不会有方块的消除。
上面图1 到图 3 给出了在棋盘上移动一块方块之后棋盘的变化。棋盘的左下角方块的坐标为(0, 0 ),将位于(3, 3 )的方块向左移动之后,游戏界面从图 1 变成图 2 所示的状态,此时在一竖列上有连续三块颜色为4 的方块,满足消除条件,消除连续3 块颜色为4 的方块后,上方的颜色为3 的方块掉落,形成图 3 所示的局面。
输入输出格式
输入格式:
输入文件mayan.in,共 6 行。
第一行为一个正整数n ,表示要求游戏通关的步数。
接下来的5 行,描述 7*5 的游戏界面。每行若干个整数,每两个整数之间用一个空格隔开,每行以一个0 结束,自下向上表示每竖列方块的颜色编号(颜色不多于10种,从1 开始顺序编号,相同数字表示相同颜色)。
输入数据保证初始棋盘中没有可以消除的方块。
输出格式:
输出文件名为mayan.out。
如果有解决方案,输出 n 行,每行包含 3 个整数x,y,g ,表示一次移动,每两个整数之间用一个空格隔开,其中(x ,y)表示要移动的方块的坐标,g 表示移动的方向,1 表示向右移动,-1表示向左移动。注意:多组解时,按照 x 为第一关健字,y 为第二关健字,1优先于-1 ,给出一组字典序最小的解。游戏界面左下角的坐标为(0 ,0 )。
如果没有解决方案,输出一行,包含一个整数-1。
输入输出样例
输入样例#1:
3
1 0
2 1 0
2 3 4 0
3 1 0
2 4 3 4 0
输出样例#1:
2 1 1
3 1 1
3 0 1
说明
【输入输出样例说明】
按箭头方向的顺序分别为图6 到图11
样例输入的游戏局面如上面第一个图片所示,依次移动的三步是:(2 ,1 )处的方格向右移动,(3,1 )处的方格向右移动,(3 ,0)处的方格向右移动,最后可以将棋盘上所有方块消除。
【数据范围】
对于30% 的数据,初始棋盘上的方块都在棋盘的最下面一行;
对于100%的数据,0 < n≤5 。
题目范围可以看出是搜索
但需要加一些剪枝,剩下就是简单模拟了,自己编程水平仍然太差
这个剪枝就是如果我左边存在数字的话
那么我就不去搜索左面了,因为我可能是从左面换过来的
#include<cstdio>
#include<cstring>
#include<stack>
int map[5][7],k,s[10];
struct node{
int mm[5][7];
node(){
memset(mm,0,sizeof(mm));
}
}start;
struct node1{
int a,b,c;
};
std::stack<node1> q;
inline void swap(int &x,int &y){
x^=y;y^=x;x^=y;
}
inline void down(node &s){
for (int i=0;i<5;++i){
int j=0;
while (s.mm[i][j]) ++j;
if (j==7) continue;
int k=j+1;
while (s.mm[i][k]==0&&k<7) ++k;
while (k<7) swap(s.mm[i][j++],s.mm[i][k++]);
}
/*for (int i=0;i<5;++i){
for (int j=0;j<7;++j) printf("%d ",s.mm[i][j]);printf("\n");
}printf("down\n");*/
}
inline void clear(node &s){
bool flag[5][7];
while(1){
bool flag1=true;memset(flag,false,sizeof(flag));
for (int i=0;i<5;++i){
for (int j=0;j<7;++j){
int ii=1;
while (i-ii>=0&&i+ii<5&&s.mm[i-ii][j]==s.mm[i+ii][j]&&s.mm[i-ii][j]&&s.mm[i-ii][j]==s.mm[i][j]) flag[i][j]=flag[i-ii][j]=flag[i+ii][j]=true,++ii;
ii=1;
while (j-ii>=0&&j+ii<7&&s.mm[i][j-ii]==s.mm[i][j+ii]&&s.mm[i][j-ii]&&s.mm[i][j-ii]==s.mm[i][j]) flag[i][j]=flag[i][j-ii]=flag[i][j+ii]=true,++ii;
}
}
for (int i=0;i<5;++i)
for (int j=0;j<7;++j) if(flag[i][j]) s.mm[i][j]=0,flag1=false;
down(s);
if (flag1) break;
}
/* for (int i=0;i<5;++i){
for (int j=0;j<7;++j) printf("%d ",s.mm[i][j]);printf("\n");
}printf("clear\n");*/
}
int f(node s,int k){
if (k==0){
bool flag=false;
for (int i=0;i<5;++i) for (int j=0;j<7;++j) if (s.mm[i][j]) flag=true;
if (flag) return -1;else return 1;
}
/*if (k==1&&s.mm[4][1]==3){
for (int i=0;i<5;++i){
for (int j=0;j<7;++j) printf("%d ",s.mm[i][j]);printf("\n");
}printf("%d work\n",k);
}*/
for (int i=0;i<5;++i){
for (int j=0;j<7;++j){
if (s.mm[i][j]){
node s1=s;if (i+1<5){
swap(s1.mm[i][j],s1.mm[i+1][j]);down(s1);clear(s1);
int tmp=f(s1,k-1);if (tmp==1) {node1 tt;tt.a=i;tt.b=j;tt.c=1;q.push(tt);return 1;}
}
if (s.mm[i-1][j]) continue;s1=s;
if (i-1>=0){
swap(s1.mm[i][j],s1.mm[i-1][j]);down(s1);clear(s1);
int tmp=f(s1,k-1);if (tmp==1) {node1 tt;tt.a=i;tt.b=j;tt.c=-1;q.push(tt);return 1;}
}
}
}
}
return -1;
}
int main(){
// freopen("mayan.in","r",stdin);
//freopen("mayan.out","w",stdout);
scanf("%d",&k);
for (int i=0;i<5;++i){
int tmp,ii=0;
while(~scanf("%d",&tmp)&&tmp) map[i][ii++]=tmp,start.mm[i][ii-1]=tmp;
}
if(f(start,k)==-1) printf("-1");else while (!q.empty()) printf("%d %d %d\n",q.top().a,q.top().b,q.top().c),q.pop();
return 0;
}