bzoj 4916 神犇和蒟蒻

http://www.elijahqi.win/archives/3311
Description

很久很久以前,有一只神犇叫yzy;
很久很久之后,有一只蒟蒻叫lty;
Input

请你读入一个整数N;1<=N<=1E9,A、B模1E9+7;
Output

请你输出一个整数A=\sum_{i=1}^N{\mu (i^2)};
请你输出一个整数B=\sum_{i=1}^N{\varphi (i^2)};

Sample Input

1
Sample Output

1
1
HINT

Source

By Monster_Yi
首先考虑一个性质即 φ(i2)=φ(i)×i φ ( i 2 ) = φ ( i ) × i
这个就分解下质因数直接按照他给的 不过有变化 变化的只不过是影响写在最前面了 然后就可以看一些常见套路了 考虑 将他仍然写成一个卷积的形式 设f函数表示 φ(i2) φ ( i 2 )
那么可以写出式子 d|nf[nd]×g[d] ∑ d | n f [ n d ] × g [ d ] 设g为常函数 那么将f打开可以发现上下的d消去了 最后每一项都剩下一个n* φ φ 不妨将这个n提取出 然后就变成了 φ×1=id φ × 1 = i d 于是前面的式子瞬间做成n^2 然后就杜教筛一下讨论下即可 具体参照之前的blog

#include<cstdio>
#include<cctype>
#include<algorithm>
#define ll long long
using namespace std;
const int mod=1e9+7;
const int N=2e6+10;
inline char gc(){
    static char now[1<<16],*S,*T;
    if (T==S){T=(S=now)+fread(now,1,1<<16,stdin);if (T==S) return EOF;}
    return *S++;
}
inline int read(){
    int x=0,f=1;char ch=gc();
    while(!isdigit(ch)) {if (ch=='-') f=-1;ch=gc();}
    while(isdigit(ch)) x=x*10+ch-'0',ch=gc();
    return x*f;
}
int s[N],prime[N],tot,n,phi[N],inv6;
bool not_prime[N];
inline int ksm(ll b,int t){ll tmp=1;
    for (;t;b=b*b%mod,t>>=1) if (t&1) tmp=tmp*b%mod;return tmp;
}
inline void inc(int &x,int v){x=x+v>=mod?x+v-mod:x+v;}
inline void dec(int &x,int v){x=x-v<0?x-v+mod:x-v;}
inline int calc(int x){
    if (x<=2e6) return phi[x];if (s[n/x]) return s[n/x];
    int tmp=(ll)x*(x+1)%mod*(2*x+1)%mod*inv6%mod,last;
    for (int i=2;i<=x;i=last+1){
        last=x/(x/i);
        dec(tmp,((ll)(i+last)*(last-i+1)>>1)%mod*calc(x/i)%mod);
    }return s[n/x]=tmp;
}
int main(){
    //freopen("bzoj4916.in","r",stdin);
    n=read();puts("1");
    for (int i=2;i<=2e6;++i){
        if (!not_prime[i]) prime[++tot]=i,phi[i]=i-1;
        for (int j=1;prime[j]*i<=2e6;++j){
            not_prime[prime[j]*i]=1;
            if (i%prime[j]==0){
                phi[prime[j]*i]=phi[i]*prime[j];break;
            }else phi[prime[j]*i]=phi[i]*phi[prime[j]];
        }
    }phi[1]=1;for (int i=2;i<=2e6;++i) phi[i]=(ll)phi[i]*i%mod,inc(phi[i],phi[i-1]);
    inv6=ksm(6,mod-2);printf("%d\n",calc(n));
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值