http://www.elijahqi.win/archives/3311
Description
很久很久以前,有一只神犇叫yzy;
很久很久之后,有一只蒟蒻叫lty;
Input
请你读入一个整数N;1<=N<=1E9,A、B模1E9+7;
Output
请你输出一个整数A=\sum_{i=1}^N{\mu (i^2)};
请你输出一个整数B=\sum_{i=1}^N{\varphi (i^2)};
Sample Input
1
Sample Output
1
1
HINT
Source
By Monster_Yi
首先考虑一个性质即
φ(i2)=φ(i)×i
φ
(
i
2
)
=
φ
(
i
)
×
i
这个就分解下质因数直接按照他给的 不过有变化 变化的只不过是影响写在最前面了 然后就可以看一些常见套路了 考虑 将他仍然写成一个卷积的形式 设f函数表示
φ(i2)
φ
(
i
2
)
那么可以写出式子
∑d|nf[nd]×g[d]
∑
d
|
n
f
[
n
d
]
×
g
[
d
]
设g为常函数 那么将f打开可以发现上下的d消去了 最后每一项都剩下一个n*
φ
φ
不妨将这个n提取出 然后就变成了
φ×1=id
φ
×
1
=
i
d
于是前面的式子瞬间做成n^2 然后就杜教筛一下讨论下即可 具体参照之前的blog
#include<cstdio>
#include<cctype>
#include<algorithm>
#define ll long long
using namespace std;
const int mod=1e9+7;
const int N=2e6+10;
inline char gc(){
static char now[1<<16],*S,*T;
if (T==S){T=(S=now)+fread(now,1,1<<16,stdin);if (T==S) return EOF;}
return *S++;
}
inline int read(){
int x=0,f=1;char ch=gc();
while(!isdigit(ch)) {if (ch=='-') f=-1;ch=gc();}
while(isdigit(ch)) x=x*10+ch-'0',ch=gc();
return x*f;
}
int s[N],prime[N],tot,n,phi[N],inv6;
bool not_prime[N];
inline int ksm(ll b,int t){ll tmp=1;
for (;t;b=b*b%mod,t>>=1) if (t&1) tmp=tmp*b%mod;return tmp;
}
inline void inc(int &x,int v){x=x+v>=mod?x+v-mod:x+v;}
inline void dec(int &x,int v){x=x-v<0?x-v+mod:x-v;}
inline int calc(int x){
if (x<=2e6) return phi[x];if (s[n/x]) return s[n/x];
int tmp=(ll)x*(x+1)%mod*(2*x+1)%mod*inv6%mod,last;
for (int i=2;i<=x;i=last+1){
last=x/(x/i);
dec(tmp,((ll)(i+last)*(last-i+1)>>1)%mod*calc(x/i)%mod);
}return s[n/x]=tmp;
}
int main(){
//freopen("bzoj4916.in","r",stdin);
n=read();puts("1");
for (int i=2;i<=2e6;++i){
if (!not_prime[i]) prime[++tot]=i,phi[i]=i-1;
for (int j=1;prime[j]*i<=2e6;++j){
not_prime[prime[j]*i]=1;
if (i%prime[j]==0){
phi[prime[j]*i]=phi[i]*prime[j];break;
}else phi[prime[j]*i]=phi[i]*phi[prime[j]];
}
}phi[1]=1;for (int i=2;i<=2e6;++i) phi[i]=(ll)phi[i]*i%mod,inc(phi[i],phi[i-1]);
inv6=ksm(6,mod-2);printf("%d\n",calc(n));
return 0;
}