bzoj 2337 [HNOI2011]XOR和路径

http://www.elijahqi.win/archives/3375
题目描述
给定一个无向连通图,其节点编号为 1 到 N,其边的权值为非负整数。试求出一条从 1 号节点到 N 号节点的路径,使得该路径上经过的边的权值的“XOR 和”最大。该路径可以重复经过某些节点或边,当一条边在路径中出现多次时,其权值在计算“XOR 和”时也要被重复计算相应多的次数。
直接求解上述问题比较困难,于是你决定使用非完美算法。具体来说,从 1 号节点开始,以相等的概率,随机选择与当前节点相关联的某条边,并沿这条边走到下一个节点,重复这个过程,直到走到 N 号节点为止,便得到一条从 1 号节点到 N 号节点的路径。显然得到每条这样的路径的概率是不同的并且每条这样的路径的“XOR 和”也不一样。现在请你求出该算法得到的路径的“XOR 和”的期望值。
输入输出格式
输入格式:

从文件input.txt中读入数据,输入文件的第一行是用空格隔开的两个正整数N和M,分别表示该图的节点数和边数。紧接着的M行,每行是用空格隔开的三个非负整数u,v和w(1≤u,v≤N,0≤w≤109),表示该图的一条边(u,v),其权值为w。输入的数据保证图连通,30%的数据满足N≤30,100%的数据满足2≤N≤100,M≤10000,但是图中可能有重边或自环。

输出格式:

输出文件 output.txt 仅包含一个实数,表示上述算法得到的路径的“XOR 和”的期望值,要求保留三位小数。(建议使用精度较高的数据类型进行计算)

输入输出样例
输入样例#1: 复制
2 2
1 1 2
1 2 3
输出样例#1: 复制
2.333
说明
样例解释:有1/2的概率直接从1号节点走到2号节点,该路径的“XOR和”为3;有1/4的概率从1号节点走一次1号节点的自环后走到2号节点,该路径的“XOR和”为1;有1/8的概率从1号节点走两次1号节点的自环后走到2号节点,该路径的“XOR和”为3;„„;依此类推,可知“XOR
和”的期望值为:3/2+1/4+3/8+1/16+3/32+„„=7/3,约等于2.333。
高斯消元即可竟然卡精度..
异或的性质 单独拆开讨论
设dp[i]表示i节点到n为二进制那一位为1的概率
于是有方程dp[i]=edge.z=11f[y]d[i]+edge.z=0f[y]d[i]
注意自环不可以加两遍

#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
using namespace std;
inline char gc(){
    static char now[1<<16],*S,*T;
    if (T==S){T=(S=now)+fread(now,1,1<<16,stdin);if (T==S) return EOF;}
    return *S++;
}
inline int read(){
    int x=0,f=1;char ch=gc();
    while (!isdigit(ch)) {if (ch=='-') f=-1;ch=gc();}
    while (isdigit(ch)) x=x*10+ch-'0',ch=gc();
    return x*f;
}
const int N=200;
double a[N][N],ans[N],ans1;
int d[N],h[N],m,num,n;
struct node{
    int y,next,z;
}data[N*N];
inline void build(int p){
    memset(a,0,sizeof(a));
    for (int i=1;i<=n;++i) a[i][i]=1;
    for (int x=1;x<n;++x){
        for (int i=h[x];i;i=data[i].next){
            int y=data[i].y,z=data[i].z;
            if ((1<<p)&z) a[x][y]+=1.0/d[x],a[x][n+1]+=1.0/d[x];
            else a[x][y]-=1.0/d[x];
        }
    }
}
inline void gauss(){
    for (int i=1;i<n;++i){
        double mx=a[i][i];int id=i;
        for (int j=i+1;j<=n;++j)
            if (fabs(a[j][i])>fabs(mx)) mx=a[j][i],id=j;
        if (id!=i) swap(a[id],a[i]);
        for (int j=i+1;j<=n;++j){double t=a[j][i]/a[i][i];
            for (int k=i;k<=n+1;++k) a[j][k]-=t*a[i][k];
        }
    }
    for (int i=n;i;--i){
        for (int j=i+1;j<=n;++j) a[i][n+1]-=ans[j]*a[i][j];
        ans[i]=a[i][n+1]/a[i][i];
    }
}
int main(){
    freopen("bzoj2337.in","r",stdin);
    n=read();m=read();
    for (int i=1;i<=m;++i){
        int x=read(),y=read(),z=read();
        data[++num].y=y;data[num].next=h[x];h[x]=num;data[num].z=z;++d[x];
        if (!(x^y)) continue;
        data[++num].y=x;data[num].next=h[y];h[y]=num;data[num].z=z;++d[y];
    }
    for (int i=0;i<=30;++i) build(i),
        gauss(),
    ans1+=(1<<i)*ans[1];
    printf("%.3f\n",ans1);
    return 0;
}
阅读更多
版权声明:辣鸡蒟蒻的blog https://blog.csdn.net/elijahqi/article/details/80334256
个人分类: 数学 高斯消元
上一篇loj2555&luogu4602 「CTSC2018」混合果汁
下一篇codeforces 678E Another Sith Tournament
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭