http://www.elijahqi.win/archives/1449
题目描述
有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小。
输入输出格式
输入格式:
第一行为3个整数,分别表示a,b,n的值
第二行至第a+1行每行为b个非负整数,表示矩阵中相应位置上的数。每行相邻两数之间用一空格分隔。
输出格式:
仅一个整数,为a*b矩阵中所有“n*n正方形区域中的最大整数和最小整数的差值”的最小值。
输入输出样例
输入样例#1: 复制
5 4 2
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2
输出样例#1: 复制
1
说明
问题规模
(1)矩阵中的所有数都不超过1,000,000,000
(2)20%的数据2<=a,b<=100,n<=a,n<=b,n<=10
(3)100%的数据2<=a,b<=1000,n<=a,n<=b,n<=100
单调队列搞 对于每一个矩形的前n列均暴力重建
我针对每一列都建立单调队列 q3[j]q4[j] 表示第j列的递增和递减单调队列
q1 q2表示这一行的递增和递减单调队列 注意:要将竖着的一列的值和map[i][j]做比较 然后再做q1和q2 这两个单调队列
#include<cstdio>
#define N 1100
#define inf 0x7f7f7f7f
#include<deque>
#include<algorithm>
using namespace std;
inline char gc(){
static char now[1<<16],*S,*T;
if (T==S){T=(S=now)+fread(now,1,1<<16,stdin);if (T==S) return EOF;}
return *S++;
}
inline int read(){
int x=0,f=1;char ch=gc();
while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=gc();}
while (ch<='9'&&ch>='0'){x=x*10+ch-'0';ch=gc();}
return x*f;
}
struct node{
int x,y,v;
};//q1->max q2->min q3->max q4->min
int map[N][N],a,b,n;
deque<node> q1,q2,q3[N],q4[N];
int main(){
freopen("2216.in","r",stdin);
a=read();b=read();n=read();int ans=inf;
for (int i=1;i<=a;++i)
for (int j=1;j<=b;++j) map[i][j]=read();
int op1=1,cl1=0,op2=1,cl2=0;
for (int k=1;k<=b-n+1;++k){
int min1=inf,max1=0;
for (int j=k;j<=k+n-1;++j){
for (int i=1;i<=n;++i){
while (!q3[j].empty()&&q3[j].back().v<map[i][j]) q3[j].pop_back();
while (!q4[j].empty()&&q4[j].back().v>map[i][j]) q4[j].pop_back();
max1=max(max1,map[i][j]);min1=min(min1,map[i][j]);
node tmp;tmp.v=map[i][j];tmp.x=i;tmp.y=j;q3[j].push_back(tmp);q4[j].push_back(tmp);
}
}ans=min(ans,max1-min1);
}
for (int i=n+1;i<=a;++i){
q1.clear();q2.clear();
for (int j=1;j<=n;++j){
while (!q3[j].empty()&&q3[j].front().x<=i-n) q3[j].pop_front();
while (!q4[j].empty()&&q4[j].front().x<=i-n) q4[j].pop_front();
while (!q3[j].empty()&&q3[j].back().v<map[i][j]) q3[j].pop_back();
while (!q4[j].empty()&&q4[j].back().v>map[i][j]) q4[j].pop_back();
node tmp;tmp.v=map[i][j];tmp.x=i;tmp.y=j;node max2,min2;max2.v=0;min2.v=inf;
q3[j].push_back(tmp);q4[j].push_back(tmp);max2.x=i;max2.y=j;min2.x=i;min2.y=j;max2.v=min2.v=map[i][j];
if (q4[j].front().v<min2.v) {min2.v=q4[j].front().v;min2.x=q4[j].front().x;min2.y=q4[j].front().y;}
if (q3[j].front().v>max2.v) {max2.v=q3[j].front().v;max2.x=q3[j].front().x;max2.y=q3[j].front().y;}
while (!q1.empty()&&q1.back().v<max2.v) q1.pop_back();
while (!q2.empty()&&q2.back().v>min2.v) q2.pop_back();
q1.push_back(max2);q2.push_back(min2);
}
for (int j=1;j<=n;++j)
ans=min(ans,max(q1.front().v,q3[j].front().v)-min(q2.front().v,q4[j].front().v));
for (int j=n+1;j<=b;++j){
while (!q3[j].empty()&&q3[j].front().x<=i-n) q3[j].pop_front();
while (!q4[j].empty()&&q4[j].front().x<=i-n) q4[j].pop_front();
while (!q3[j].empty()&&q3[j].back().v<map[i][j]) q3[j].pop_back();
while (!q4[j].empty()&&q4[j].back().v>map[i][j]) q4[j].pop_back();
node tmp;tmp.v=map[i][j];tmp.x=i;tmp.y=j;node max2,min2;max2.v=0;min2.v=inf;
q3[j].push_back(tmp);q4[j].push_back(tmp);max2.x=i;max2.y=j;min2.x=i;min2.y=j;max2.v=min2.v=map[i][j];
if (q4[j].front().v<min2.v) {min2.v=q4[j].front().v;min2.x=q4[j].front().x;min2.y=q4[j].front().y;}
if (q3[j].front().v>max2.v) {max2.v=q3[j].front().v;max2.x=q3[j].front().x;max2.y=q3[j].front().y;}
while (!q1.empty()&&q1.front().y<=j-n) q1.pop_front();
while (!q2.empty()&&q2.front().y<=j-n) q2.pop_front();
while (!q1.empty()&&q1.back().v<max2.v) q1.pop_back();
while (!q2.empty()&&q2.back().v>min2.v) q2.pop_back();
q1.push_back(max2);q2.push_back(min2);
ans=min(ans,max(q1.front().v,q3[j].front().v)-min(q2.front().v,q4[j].front().v));
}
}printf("%d",ans);
return 0;
}