bzoj 4197 [Noi2015]寿司晚宴

http://www.elijahqi.win/archives/3867
Description
为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴。小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴。

在晚宴上,主办方为大家提供了 n−1 种不同的寿司,编号 1,2,3,…,n−1,其中第 i 种寿司的美味度为 i+1 (即寿司的美味度为从 2 到 n)。
现在小 G 和小 W 希望每人选一些寿司种类来品尝,他们规定一种品尝方案为不和谐的当且仅当:小 G 品尝的寿司种类中存在一种美味度为 x 的寿司,小 W 品尝的寿司中存在一种美味度为 y 的寿司,而 x 与 y 不互质。
现在小 G 和小 W 希望统计一共有多少种和谐的品尝寿司的方案(对给定的正整数 p 取模)。注意一个人可以不吃任何寿司。

Input
输入文件的第 1 行包含 2 个正整数 n,p,中间用单个空格隔开,表示共有 n 种寿司,最终和谐的方案数要对 p 取模。

Output
输出一行包含 1 个整数,表示所求的方案模 p 的结果。

Sample Input
3 10000
Sample Output
9
HINT
2≤n≤500

0< p≤1000000000
Source
考虑到质因数翻倍之后仍然<=500的质因数只有8个

所以我们把这八个记录下来 然后剩下的因为每次只会出现一次单独统计即可

考虑设dp[s1][s2]表示 在现在的所有状态中第一个人 选了8个质因数中s1状态 第二个人选了s2状态 我的方案数是多少

那么每次转移的时候如果发现这个多出来的因数不同的时候我就复制一下 变成g[0/1][s1][s2]分别i表示 这个质因子在第一个人手中 他们小于八的质因数的状态分别是s1 s2 的方案数

那么直接类似背包dp做即可

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=1<<8;
struct node{
    int x,y;
}data[550];
ll g[2][N][N],dp[N][N],mod;int n,tot;
int prime[]={2, 3, 5, 7, 11, 13, 17, 19};
inline bool cmp(const node &a,const node &b){return a.x<b.x;}
inline void inc(ll &x,ll v){x=x+v>=mod?x+v-mod:x+v;}
inline ll dec(ll x,ll v){return x-v<0?x-v+mod:x-v;}
int main(){
    freopen("3.in","r",stdin);
    scanf("%d%lld",&n,&mod);
    for (int i=2;i<=min(n,20);++i){
        bool flag=1;
        for (int j=2;j*j<=i;++j){
            if (i%j==0) {flag=0;break;}
        }if (flag)prime[tot++]=i;
    }
    for (int owo=2;owo<=n;++owo){
        int x=owo;
        for (int i=0;i<tot;++i){
            if (x%prime[i]) continue;
            data[owo].y|=1<<i;while(x%prime[i]==0) x/=prime[i];
        }data[owo].x=x;
    }sort(data+2,data+n+1,cmp);dp[0][0]=1;int S=1<<tot;S-=1;
    for (int i=2;i<=n;++i){
        if (i==2||data[i].x==1||data[i].x!=data[i-1].x){
            memcpy(g[0],dp,sizeof(dp));memcpy(g[1],dp,sizeof(dp));
        }
        for (int s1=S;~s1;--s1){int ss=S^s1;
            for (int s2=ss;s2;s2=(s2-1)&ss){
                if (!(data[i].y&s2)) inc(g[0][s1|data[i].y][s2],g[0][s1][s2]);
                if (!(data[i].y&s1)) inc(g[1][s1][s2|data[i].y],g[1][s1][s2]);
            }inc(g[0][s1|data[i].y][0],g[0][s1][0]);
            if (!(data[i].y&s1)) inc(g[1][s1][data[i].y],g[1][s1][0]);
        }
        if (i==n||data[i].x!=data[i+1].x||data[i].x==1){
            for (int s1=S;~s1;--s1){int ss=S^s1;
                for (int s2=ss;s2;s2=(s2-1)&ss){
                    dp[s1][s2]=(g[0][s1][s2]+dec(g[1][s1][s2],dp[s1][s2]))%mod;
                }dp[s1][0]=(g[0][s1][0]+dec(g[1][s1][0],dp[s1][0]))%mod;
            }
        }
    }ll ans=0;
    for (int s1=S;~s1;--s1){int ss=S^s1;
        for (int s2=ss;s2;s2=(s2-1)&ss){
            inc(ans,dp[s1][s2]);
        }inc(ans,dp[s1][0]);
    }printf("%lld\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值