ORACLE SQL性能优化No2

oracle SQL性能优化

我们要做到不但会写SQL,还要做到写出性能优良的SQL,以下为笔者学习、摘录、并汇总部分资料与大家分享!

(1)      选择最有效率的表名顺序 ( 只在基于规则的优化器中有效 )
ORACLE 的解析器按照从右到左的顺序处理 FROM 子句中的表名, FROM 子句中写在最后的表 ( 基础表 driving table) 将被最先处理,在 FROM 子句中包含多个表的情况下 , 你必须选择记录条数最少的表作为基础表。如果有 3 个以上的表连接查询 , 那就需要选择交叉表 (intersection table) 作为基础表 , 交叉表是指那个被其他表所引用的表 .
(2)      WHERE 子句中的连接顺序.:
ORACLE 采用自下而上的顺序解析 WHERE 子句 , 根据这个原理 , 表之间的连接必须写在其他 WHERE 条件之前 , 那些可以过滤掉最大数量记录的条件必须写在 WHERE 子句的末尾 .
(3)      SELECT 子句中避免使用 ‘ * ‘
ORACLE 在解析的过程中 , 会将 '*' 依次转换成所有的列名 , 这个工作是通过查询数据字典完成的 , 这意味着将耗费更多的时间
(4)      减少访问数据库的次数:
ORACLE 在内部执行了许多工作 : 解析 SQL 语句 , 估算索引的利用率 , 绑定变量 , 读数据块等;
(5)      SQL*Plus , SQL*Forms Pro*C 中重新设置 ARRAYSIZE 参数 , 可以增加每次数据库访问的检索数据量 , 建议值为 200
(6)      使用 DECODE 函数来减少处理时间:
使用 DECODE 函数可以避免重复扫描相同记录或重复连接相同的表 .
(7)      整合简单 , 无关联的数据库访问:
如果你有几个简单的数据库查询语句 , 你可以把它们整合到一个查询中 ( 即使它们之间没有关系 )
(8)      删除重复记录
最高效的删除重复记录方法 ( 因为使用了 ROWID) 例子:
DELETE  FROM  EMP E  WHERE  E.ROWID > (SELECT MIN(X.ROWID)
FROM  EMP X  WHERE  X.EMP_NO = E.EMP_NO);
(9)      TRUNCATE 替代 DELETE
当删除表中的记录时 , 在通常情况下 , 回滚段 (rollback segments ) 用来存放可以被恢复的信息 . 如果你没有 COMMIT 事务 ,ORACLE 会将数据恢复到删除之前的状态 ( 准确地说是 恢复到执行删除命令之前的状况 ) 而当运用 TRUNCATE , 回滚段不再存放任何可被恢复的信息 . 当命令运行后 , 数据不能被恢复 . 因此很少的资源被调用 , 执行时间也会很短 . ( 译者按 : TRUNCATE 只在删除全表适用 ,TRUNCATE DDL 不是 DML)
(10)  尽量多使用 COMMIT
只要有可能 , 在程序中尽量多使用 COMMIT, 这样程序的性能得到提高 , 需求也会因为 COMMIT 所释放的资源而减少 :
COMMIT
所释放的资源 :
a.
回滚段上用于恢复数据的信息 .
b.
被程序语句获得的锁
c. redo log buffer
中的空间
d. ORACLE
为管理上述 3 种资源中的内部花费
(11)  Where 子句替换 HAVING 子句:
避免使用 HAVING 子句 , HAVING 只会在检索出所有记录之后才对结果集进行过滤 . 这个处理需要排序 , 总计等操作 . 如果能通过 WHERE 子句限制记录的数目 , 那就能减少这方面的开销 . ( oracle ) on where having 这三个都可以加条件的子句中, on 是最先执行, where 次之, having 最后,因为 on 是先把不符合条件的记录过滤后才进行统计,它就可以减少中间运算要处理的数据,按理说应该速度是最快的, where 也应该比 having 快点的,因为它过滤数据后才进行 sum ,在两个表联接时才用 on 的,所以在一个表的时候,就剩下 where having 比较了。在这单表查询统计的情况下,如果要过滤的条件没有涉及到要计算字段,那它们的结果是一样的,只是 where 可以使用 rushmore 技术,而 having 就不能,在速度上后者要慢如果要涉及到计算的字段,就表示在没计算之前,这个字段的值是不确定的,根据上篇写的工作流程, where 的作用时间是在计算之前就完成的,而 having 就是在计算后才起作用的,所以在这种情况下,两者的结果会不同。在多表联接查询时, on where 更早起作用。系统首先根据各个表之间的联接条件,把多个表合成一个临时表后,再由 where 进行过滤,然后再计算,计算完后再由 having 进行过滤。由此可见,要想过滤条件起到正确的作用,首先要明白这个条件应该在什么时候起作用,然后再决定放在那里
(12)  减少对表的查询:
在含有子查询的 SQL 语句中 , 要特别注意减少对表的查询 . 例子:
     SELECT  TAB_NAME FROM TABLES WHERE (TAB_NAME,DB_VER) = ( SELECT
TAB_NAME,DB_VER  FROM  TAB_COLUMNS   WHERE  VERSION = 604)
(13)  通过内部函数提高 SQL 效率 .
复杂的 SQL 往往牺牲了执行效率 . 能够掌握上面的运用函数解决问题的方法在实际工作中是非常有意义的
(14)  使用表的别名 (Alias)
当在 SQL 语句中连接多个表时 , 请使用表的别名并把别名前缀于每个 Column . 这样一来 , 就可以减少解析的时间并减少那些由 Column 歧义引起的语法错误 .
(15)  EXISTS 替代 I N NOT EXISTS 替代 NOT IN
在许多基于基础表的查询中 , 为了满足一个条件 , 往往需要对另一个表进行联接 . 在这种情况下 , 使用 EXISTS( NOT EXISTS) 通常将提高查询的效率 . 在子查询中 ,NOT IN 子句将执行一个内部的排序和合并 . 无论在哪种情况下 ,NOT IN 都是最低效的 ( 因为它对子查询中的表执行了一个全表遍历 ). 为了避免使用 NOT IN , 我们可以把它改写成外连接 (Outer Joins) NOT EXISTS.
例子:
高效 SELECT * FROM  EMP ( 基础表 )   WHERE  EMPNO > 0   AND   EXISTS ( SELECT ‘X'   FROM DEPT   WHERE  DEPT.DEPTNO = EMP.DEPTNO   AND  LOC = ‘MELB')
( 低效 ) SELECT  * FROM  EMP ( 基础表 )   WHERE  EMPNO > 0   AND  DEPTNO IN (SELECT DEPTNO   FROM  DEPT   WHERE  LOC = ‘MELB' )
(16)  识别' 低效执行' SQL 语句:
虽然目前各种关于 SQL 优化的图形化工具层出不穷 , 但是写出自己的 SQL 工具来解决问题始终是一个最好的方法:
SELECT  EXECUTIONS , DISK_READS, BUFFER_GETS,
ROUND ((BUFFER_GETS-DISK_READS)/BUFFER_GETS,2 ) Hit_radio,
ROUND (DISK_READS/EXECUTIONS,2) Reads_per_run,
SQL_TEXT
FROM  V$SQLAREA
WHERE  EXECUTIONS>0
AND  BUFFER_GETS > 0
AND  (BUFFER_GETS-DISK_READS)/BUFFER_GETS < 0.8
ORDER BY   4 DESC ;
 
(17)  用索引提高效率:
索引是表的一个概念部分 , 用来提高检索数据的效率, ORACLE 使用了一个复杂的自平衡 B-tree 结构 . 通常 , 通过索引查询数据比全表扫描要快 . ORACLE 找出执行查询和 Update 语句的最佳路径时 , ORACLE 优化器将使用索引 . 同样在联结多个表时使用索引也可以提高效率 . 另一个使用索引的好处是 , 它提供了主键 (primary key) 的唯一性验证 . 。那些 LONG LONG RAW 数据类型 , 你可以索引几乎所有的列 . 通常 , 在大型表中使用索引特别有效 . 当然 , 你也会发现 , 在扫描小表时 , 使用索引同样能提高效率 . 虽然使用索引能得到查询效率的提高 , 但是我们也必须注意到它的代价 . 索引需要空间来存储 , 也需要定期维护 , 每当有记录在表中增减或索引列被修改时 , 索引本身也会被修改 . 这意味着每条记录的 INSERT , DELETE , UPDATE 将为此多付出 4 , 5 次的磁盘 I/O . 因为索引需要额外的存储空间和处理 , 那些不必要的索引反而会使查询反应时间变慢 . 。定期的重构索引是有必要的 .
ALTER   INDEX <INDEXNAME> REBUILD <TABLESPACENAME>
(18)  EXISTS 替换 DISTINCT
当提交一个包含一对多表信息 ( 比如部门表和雇员表 ) 的查询时 , 避免在 SELECT 子句中使用 DISTINCT. 一般可以考虑用 EXIST 替换 , EXISTS 使查询更为迅速 , 因为 RDBMS 核心模块将在 子查询的条件一旦满足后 , 立刻返回结果 . 例子:
       ( 低效 ):
SELECT   DISTINCT  DEPT_NO,DEPT_NAME   FROM  DEPT D , EMP E
WHERE  D.DEPT_NO = E.DEPT_NO
( 高效 ):
SELECT  DEPT_NO,DEPT_NAME   FROM  DEPT D   WHERE   EXISTS ( SELECT ‘X'
FROM  EMP E   WHERE  E.DEPT_NO = D.DEPT_NO ) ;
(19)  sql 语句用大写的 ;因为 oracle 总是先解析 sql 语句,把小写的字母转换成大写的再执行
(20)  java 代码中尽量少用连接符“+”连接字符串
(21)  避免在索引列上使用NOT 通常 , 
我们要避免在索引列上使用 NOT, NOT 会产生在和在索引列上使用函数相同的 影响 . ORACLE” 遇到 ”NOT, 他就会停止使用索引转而执行全表扫描 .
(22)  避免在索引列上使用计算.
WHERE
子句中,如果索引列是函数的一部分.优化器将不使用索引而使用全表扫描.
举例 :
低效:
SELECT … FROM  DEPT  WHERE SAL * 12 > 25000;
高效 :
SELECT … FROM DEPT WHERE SAL > 25000/12;
(23)  >= 替代 >
高效 :
SELECT * FROM  EMP  WHERE  DEPTNO >=4
低效 :
SELECT * FROM EMP WHERE DEPTNO >3
两者的区别在于 , 前者 DBMS 将直接跳到第一个 DEPT 等于 4 的记录而后者将首先定位到 DEPTNO=3 的记录并且向前扫描到第一个 DEPT 大于 3 的记录 .
(24)  UNION 替换OR ( 适用于索引列)
通常情况下 , UNION 替换 WHERE 子句中的 OR 将会起到较好的效果 . 对索引列使用 OR 将造成全表扫描 . 注意 , 以上规则只针对多个索引列有效 . 如果有 column 没有被索引 , 查询效率可能会因为你没有选择 OR 而降低 . 在下面的例子中 , LOC_ID REGION 上都建有索引 .
高效 :
SELECT LOC_ID , LOC_DESC , REGION
FROM LOCATION
WHERE LOC_ID = 10
UNION
SELECT LOC_ID , LOC_DESC , REGION
FROM LOCATION
WHERE REGION = “MELBOURNE”
低效 :
SELECT LOC_ID , LOC_DESC , REGION
FROM LOCATION
WHERE LOC_ID = 10 OR REGION = “MELBOURNE”
如果你坚持要用 OR, 那就需要返回记录最少的索引列写在最前面 .
(25)  IN 来替换OR  
这是一条简单易记的规则,但是实际的执行效果还须检验,在 ORACLE8i 下,两者的执行路径似乎是相同的. 
低效 :
SELECT …. FROM LOCATION WHERE LOC_ID = 10 OR LOC_ID = 20 OR LOC_ID = 30
高效
SELECT FROM LOCATION WHERE LOC_IN   IN (10,20,30);
(26)  避免在索引列上使用IS NULL IS NOT NULL
避免在索引中使用任何可以为空的列, ORACLE 将无法使用该索引 .对于单列索引,如果列包含空值,索引中将不存在此记录 . 对于复合索引,如果每个列都为空,索引中同样不存在此记录 .  如果至少有一个列不为空,则记录存在于索引中. 举例 : 如果唯一性索引建立在表的 A 列和 B 列上 , 并且表中存在一条记录的 A,B 值为 (123,null) , ORACLE 将不接受下一条具有相同 A,B 值( 123,null )的记录 ( 插入 ). 然而如果 所有的索引列都为空, ORACLE 将认为整个键值为空而空不等于空 . 因此你可以插入 1000 条具有相同键值的记录 , 当然它们都是空 ! 因为空值不存在于索引列中 , 所以 WHERE 子句中对索引列进行空值比较将使 ORACLE 停用该索引 .
低效 : ( 索引失效 )
SELECT FROM  DEPARTMENT   WHERE  DEPT_CODE IS NOT NULL ;
高效 : ( 索引有效 )
SELECT FROM  DEPARTMENT   WHERE  DEPT_CODE >= 0;
(27)  总是使用索引的第一个列
如果索引是建立在多个列上 , 只有在它的第一个列 (leading column) where 子句引用时 , 优化器才会选择使用该索引 . 这也是一条简单而重要的规则,当仅引用索引的第二个列时 , 优化器使用了全表扫描而忽略了索引
(28)  UNION-ALL 替换UNION ( 如果有可能的话)
SQL 语句需要 UNION 两个查询结果集合时 , 这两个结果集合会以 UNION-ALL 的方式被合并 , 然后在输出最终结果前进行排序 . 如果用 UNION ALL 替代 UNION, 这样排序就不是必要了 . 效率就会因此得到提高 . 需要注意的是 UNION ALL 将重复输出两个结果集合中相同记录 . 因此各位还是 要从业务需求分析使用 UNION ALL 的可行性 . UNION 将对结果集合排序 , 这个操作会使用到 SORT_AREA_SIZE 这块内存 . 对于这 块内存的优化也是相当重要的 . 下面的 SQL 可以用来查询排序的消耗量
低效:
SELECT  ACCT_NUM, BALANCE_AMT
FROM  DEBIT_TRANSACTIONS
WHERE TRAN_DATE = '31-DEC-95'
UNION
SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = '31-DEC-95'
高效 :
SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = '31-DEC-95'
UNION ALL
SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = '31-DEC-95'
(29)  WHERE 替代ORDER BY
ORDER BY 子句只在两种严格的条件下使用索引 .
ORDER BY
中所有的列必须包含在相同的索引中并保持在索引中的排列顺序 .
ORDER BY
中所有的列必须定义为非空 .
WHERE
子句使用的索引和 ORDER BY 子句中所使用的索引不能并列 .
例如 :
DEPT 包含以下列 :
DEPT_CODE PK NOT NULL
DEPT_DESC NOT NULL
DEPT_TYPE NULL
低效 : ( 索引不被使用 )
SELECT DEPT_CODE  FROM  DEPT   ORDER BY  DEPT_TYPE
高效 : ( 使用索引 )
SELECT DEPT_CODE   FROM  DEPT   WHERE  DEPT_TYPE > 0
(30)  避免改变索引列的类型.:
当比较不同数据类型的数据时 , ORACLE 自动对列进行简单的类型转换 .
假设 EMPNO 是一个数值类型的索引列 .
SELECT …   FROM EMP   WHERE   EMPNO = ‘123'
实际上 , 经过 ORACLE 类型转换 , 语句转化为 :
SELECT …   FROM EMP  WHERE  EMPNO = TO_NUMBER(‘123')
幸运的是 , 类型转换没有发生在索引列上 , 索引的用途没有被改变 .
现在 , 假设 EMP_TYPE 是一个字符类型的索引列 .
SELECT …   FROM EMP   WHERE EMP_TYPE = 123
这个语句被 ORACLE 转换为 :
SELECT …   FROM EMP   WHERE TO_NUMBER(EMP_TYPE)=123
因为内部发生的类型转换 , 这个索引将不会被用到 ! 为了避免 ORACLE 对你的 SQL 进行隐式的类型转换 , 最好把类型转换用显式表现出来 . 注意当字符和数值比较时 , ORACLE 会优先转换数值类型到字符类型
(31)  需要当心的WHERE 子句:
某些 SELECT 语句中的 WHERE 子句不使用索引 . 这里有一些例子 .
在下面的例子里 , (1) ‘!=' 将不使用索引 . 记住 , 索引只能告诉你什么存在于表中 , 而不能告诉你什么不存在于表中 . (2) ‘||' 字符连接函数 . 就象其他函数那样 , 停用了索引 . (3) ‘+' 是数学函数 . 就象其他数学函数那样 , 停用了索引 . (4) 相同的索引列不能互相比较 , 这将会启用全表扫描 .
(32)  a. 如果检索数据量超过 30% 的表中记录数 . 使用索引将没有显著的效率提高 .
b.
在特定情况下 , 使用索引也许会比全表扫描慢 , 但这是同一个数量级上的区别 . 而通常情况下 , 使用索引比全表扫描要块几倍乃至几千倍 !
(33)  避免使用耗费资源的操作:
带有 DISTINCT,UNION,MINUS,INTERSECT,ORDER BY SQL 语句会启动 SQL 引擎
执行耗费资源的排序 (SORT) 功能 . DISTINCT 需要一次排序操作 , 而其他的至少需要执行两次排序 . 通常 , 带有 UNION, MINUS , INTERSECT SQL 语句都可以用其他方式重写 . 如果你的数据库的 SORT_AREA_SIZE 调配得好 , 使用 UNION , MINUS, INTERSECT 也是可以考虑的 , 毕竟它们的可读性很强
(34)  优化GROUP BY:
提高 GROUP BY 语句的效率 , 可以通过将不需要的记录在 GROUP BY 之前过滤掉 . 下面两个查询返回相同结果但第二个明显就快了许多 .
低效 :
SELECT JOB , AVG(SAL)
FROM EMP
GROUP JOB
HAVING JOB = ‘PRESIDENT'
OR JOB = ‘MANAGER'
高效 :
SELECT JOB , AVG(SAL)
FROM EMP
WHERE JOB = ‘PRESIDENT'
OR JOB = ‘MANAGER'
GROUP JOB

优化数据库的思想及SQL语句优化的原则

优化数据库的思想:
================
1、关键字段建立索引。
2、使用存储过程,它使SQL变得更加灵活和高效。
3、备份数据库和清除垃圾数据。
4、SQL语句语法的优化。(可以用Sybase的SQL Expert,可惜我没找到unexpired的
序列号)
5、清理删除日志。

SQL语句优化的原则:
==================
1、使用索引来更快地遍历表。
   缺省情况下建立的索引是非群集索引,但有时它并不是最佳的。在非群集索引
下,数据在物理上随机存放在数据页上。合理的索引设计要建立在
对各种查询的分析和预测上。一般来说:①.有大量重复值、且经常有范围查询
(between, > ,<  ,> =,<  =)和order by、group by发生的列,可考
虑建立群集索引;②.经常同时存取多列,且每列都含有重复值可考虑建立组合索引
;③.组合索引要尽量使关键查询形成索引覆盖,其前导列一定
是使用最频繁的列。索引虽有助于提高性能但不是索引越多越好,恰好相反过多的索
引会导致系统低效。用户在表中每加进一个索引,维护索引集
合就要做相应的更新工作。
2、IS NULL 与 IS NOT NULL
   不能用null作索引,任何包含null值的列都将不会被包含在索引中。即使索引有
多列这样的情况下,只要这些列中有一列含有null,该列就会从
索引中排除。也就是说如果某列存在空值,即使对该列建索引也不会提高性能。任何
在where子句中使用is null或is not null的语句优化器是不允
许使用索引的。
3、IN和EXISTS
   EXISTS要远比IN的效率高。里面关系到full table scan和range scan。几乎将所
有的IN操作符子查询改写为使用EXISTS的子查询。
4、在海量查询时尽量少用格式转换。
5、当在SQL SERVER 2000中,如果存储过程只有一个参数,并且是OUTPUT类型的,必
须在调用这个存储过程的时候给这个参数一个初始的值,否则
会出现调用错误。
6、ORDER BY和GROPU BY
   使用ORDER BY和GROUP BY短语,任何一种索引都有助于SELECT的性能提高。注意
如果索引列里面有NULL值,Optimizer将无法优化。
7、任何对列的操作都将导致表扫描,它包括数据库函数、计算表达式等等,查询时
要尽可能将操作移至等号右边。
8、IN、OR子句常会使用工作表,使索引失效。如果不产生大量重复值,可以考虑把
子句拆开。拆开的子句中应该包含索引。
9、SET SHOWPLAN_ALL ON 查看执行方案。DBCC检查数据库数据完整性。
DBCC(DataBase Consistency Checker)是一组用于验证 SQL Server 数据
库完整性的程序。
10、慎用游标
   在某些必须使用游标的场合,可考虑将符合条件的数据行转入临时表中,再对临
时表定义游标进行操作,这样可使性能得到明显提高。
总结:所谓优化即WHERE子句利用了索引,不可优化即发生了表扫描或额外开销。经
验显示,SQL Server性能的最大改进得益于逻辑的数据库设计、
索引设计和查询设计方面。反过来说,最大的性能问题常常是由其中这些相同方面中
的不足引起的。其实SQL优化的实质就是在结果正确的前提下,
用优化器可以识别的语句,充份利用索引,减少表扫描的I/O次数,尽量避免表搜索
的发生。其实SQL的性能优化是一个复杂的过程,上述这些只是
在应用层次的一种体现,深入研究还会涉及数据库层的资源配置、网络层的流量控制
以及操作系统层的总体设计。

影响SQL server性能的关键

1 逻辑数据库和表的设计
  数据库的逻辑设计、包括表与表之间的关系是优化关系型数据库性能的核心。一个好的逻辑数据库设计可以为优化数据库和应用程序打下良好的基础。

  标准化的数据库逻辑设计包括用多的、有相互关系的窄表来代替很多列的长数据表。下面是一些使用标准化表的一些好处。

A:由于表窄,因此可以使排序和建立索引更为迅速
B:由于多表,所以多镞的索引成为可能
C:更窄更紧凑的索引
D:每个表中可以有少一些的索引,因此可以提高insert update delete等的速度,因为这些操作在索引多的情况下会对系统性能产生很大的影响
E:更少的空值和更少的多余值,增加了数据库的紧凑性由于标准化,所以会增加了在获取数据时引用表的数目和其间的连接关系的复杂性。太多的表和复杂的连接关系会降低服务器的性能,因此在这两者之间需要综合考虑。
  定义具有相关关系的主键和外来键时应该注意的事项主要是:用于连接多表的主键和参考的键要有相同的数据类型。

  2 索引的设计
A:尽量避免表扫描
检查你的查询语句的where子句,因为这是优化器重要关注的地方。包含在where里面的每一列(column)都是可能的侯选索引,为能达到最优的性能,考虑在下面给出的例子:对于在where子句中给出了column1这个列。
下面的两个条件可以提高索引的优化查询性能!
第一:在表中的column1列上有一个单索引
第二:在表中有多索引,但是column1是第一个索引的列
避免定义多索引而column1是第二个或后面的索引,这样的索引不能优化服务器性能
例如:下面的例子用了pubs数据库。
SELECT au_id, au_lname, au_fname FROM authors
WHERE au_lname = ’White’
按下面几个列上建立的索引将会是对优化器有用的索引
?au_lname
?au_lname, au_fname
而在下面几个列上建立的索引将不会对优化器起到好的作用
?au_address
?au_fname, au_lname
考虑使用窄的索引在一个或两个列上,窄索引比多索引和复合索引更能有效。用窄的索引,在每一页上
将会有更多的行和更少的索引级别(相对与多索引和复合索引而言),这将推进系统性能。
对于多列索引,SQL Server维持一个在所有列的索引上的密度统计(用于联合)和在第一个索引上的
histogram(柱状图)统计。根据统计结果,如果在复合索引上的第一个索引很少被选择使用,那么优化器对很多查询请求将不会使用索引。
有用的索引会提高select语句的性能,包括insert,uodate,delete。
但是,由于改变一个表的内容,将会影响索引。每一个insert,update,delete语句将会使性能下降一些。实验表明,不要在一个单表上用大量的索引,不要在共享的列上(指在多表中用了参考约束)使用重叠的索引。
在某一列上检查唯一的数据的个数,比较它与表中数据的行数做一个比较。这就是数据的选择性,这比较结果将会帮助你决定是否将某一列作为侯选的索引列,如果需要,建哪一种索引。你可以用下面的查询语句返回某一列的不同值的数目。
select count(distinct cloumn_name) from table_name
假设column_name是一个10000行的表,则看column_name返回值来决定是否应该使用,及应该使用什么索引。
Unique values Index

5000 Nonclustered index
20 Clustered index
3 No index

镞索引和非镞索引的选择

<1:>镞索引是行的物理顺序和索引的顺序是一致的。页级,低层等索引的各个级别上都包含实际的数据页。一个表只能是有一个镞索引。由于update,delete语句要求相对多一些的读操作,因此镞索引常常能加速这样的操作。在至少有一个索引的表中,你应该有一个镞索引。
在下面的几个情况下,你可以考虑用镞索引:
例如: 某列包括的不同值的个数是有限的(但是不是极少的)
顾客表的州名列有50个左右的不同州名的缩写值,可以使用镞索引。
例如: 对返回一定范围内值的列可以使用镞索引,比如用between,>,>=,<,<=等等来对列进行操作的列上。
select * from sales where ord_date between ’5/1/93’ and ’6/1/93’
例如: 对查询时返回大量结果的列可以使用镞索引。
SELECT * FROM phonebook WHERE last_name = ’Smith’

当有大量的行正在被插入表中时,要避免在本表一个自然增长(例如,identity列)的列上建立镞索引。如果你建立了镞的索引,那么insert的性能就会大大降低。因为每一个插入的行必须到表的最后,表的最后一个数据页。
当一个数据正在被插入(这时这个数据页是被锁定的),所有的其他插入行必须等待直到当前的插入已经结束。
一个索引的叶级页中包括实际的数据页,并且在硬盘上的数据页的次序是跟镞索引的逻辑次序一样的。

<2:>一个非镞的索引就是行的物理次序与索引的次序是不同的。一个非镞索引的叶级包含了指向行数据页的指针。
在一个表中可以有多个非镞索引,你可以在以下几个情况下考虑使用非镞索引。
在有很多不同值的列上可以考虑使用非镞索引
例如:一个part_id列在一个part表中
select * from employee where emp_id = ’pcm9809f’
查询语句中用order by 子句的列上可以考虑使用镞索引

3 查询语句的设计

SQL Server优化器通过分析查询语句,自动对查询进行优化并决定最有效的执行方案。优化器分析查询语句来决定那个子句可以被优化,并针对可以被优化查询的子句来选择有用的索引。最后优化器比较所有可能的执行方案并选择最有效的一个方案出来。
在执行一个查询时,用一个where子句来限制必须处理的行数,除非完全需要,否则应该避免在一个表中无限制地读并处理所有的行。
例如下面的例子,
select qty from sales where stor_id=7131
是很有效的比下面这个无限制的查询
select qty from sales
避免给客户的最后数据选择返回大量的结果集。允许SQL Server运行满足它目的的函数限制结果集的大小是更有效的。
这能减少网络I/O并能提高多用户的相关并发时的应用程序性能。因为优化器关注的焦点就是where子句的查询,以利用有用的索引。在表中的每一个索引都可能成为包括在where子句中的侯选索引。为了最好的性能可以遵照下面的用于一个给定列column1的索引。
第一:在表中的column1列上有一个单索引
第二:在表中有多索引,但是column1是第一个索引的列不要在where子句中使用没有column1列索引的查询语句,并避免在where子句用一个多索引的非第一个索引的索引。
这时多索引是没有用的。
For example, given a multicolumn index on the au_lname, au_fname columns of the authors table in
the pubs database,
下面这个query语句利用了au_lname上的索引
SELECT au_id, au_lname, au_fname FROM authors
WHERE au_lname = ’White’
AND au_fname = ’Johnson’
SELECT au_id, au_lname, au_fname FROM authors
WHERE au_lname = ’White’
下面这个查询没有利用索引,因为他使用了多索引的非第一个索引的索引
SELECT au_id, au_lname, au_fname FROM authors
WHERE au_fname = ’Johnson’

 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值