大型语言模型作为属性化训练数据生成器

文章介绍了大型语言模型如何通过多样化属性提示生成训练数据,提高NLP任务性能。DeepMind的AlphaCode助力编程,OpenAI的神经定理证明器解决奥数问题,显示AI在数学和编程领域的潜力。数学家如陶哲轩看好AI在数学研究中的未来作用,开源项目如LeanDojo推动机器学习在定理证明的进步。
摘要由CSDN通过智能技术生成

大型语言模型作为属性化训练数据生成器,提出一种使用多样化属性提示的数据生成方法,可以生成具有多样性和属性的训练数据,从而提高了模型的性能和数据生成的效率。

动机:大型语言模型(LLM)最近被用作各种自然语言处理(NLP)任务的训练数据生成器。然而,其通常依赖于简单的类条件提示,这可能限制了生成数据的多样性并继承了LLM的系统偏差。因此,本文研究了使用多样化属性提示(例如,指定长度和风格等属性)进行训练数据生成,有可能产生多样化和具有属性的生成数据。

方法:提出一种使用多样化属性提示的数据生成方法。对于给定的分类任务,首先通过LLM的帮助,以交互式、半自动化的方式识别属性维度及其对应的属性值。然后,通过随机组合属性来生成多样化的提示,替换了通常用于从LLM查询数据的简单类条件提示。

优势:在四个分类任务上,通过测量使用两种情况下训练的模型的性能来实证评估生成的数据集:1)仅在生成的数据集上,和2)在包含真实训练集和生成集的合并数据集上。在这两种情况下,使用AttrPrompt生成的数据集明显优于使用SimPrompt生成的数据集。此外,还展示了AttrPrompt在数据/预算效率和与不同模型大小/各种LLM作为训练数据生成器方法的兼容性方面优于SimPrompt的优势。

82b41315710c414abf5a605d806a79e6.jpeg

 

去年 2 月份,DeepMind 发布了编程辅助利器 AlphaCode。它使用人工智能技术来帮助程序员更快地编写代码,可以自动完成代码、提供代码建

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sam5198

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值