青蛙跳台阶

问题描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。

思路

其实这个就是斐波那契数列的一个变种,对于n级台阶,青蛙的跳法可以有:n-1级再跳一次一阶的和n-2级再跳一次2阶。所以n级台阶的跳法就是n-1级跳法与n-2级跳法的和。

实现

class Solution {
public:
    int jumpFloor(int number) {
        
        if(number<=3){
            return number;
        }
        int sum,last1,last2;
        sum=0;
        last2=1;
        last1=2;
        for(int i=3;i<=number;i++){
            sum=last2+last1;
            last2=last1;
            last1=sum;
        }
        return sum;
    }
};

升级版青蛙跳台阶

问题描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
其实还是斐波那契数列的变种

直接使用迭代实现

F(n)=F(n-1)+F(n-2)+…+F(1);

class Solution {
public:
    int jumpFloorII(int number) {
        if(number<=1){
            return number;
        }
        int sum[number+1];
        sum[0]=0;
        for(int i=1;i<=number;i++){
            sum[i]=1;                 //这一步考虑的是一步直接跳到第i级
        }
        for(int i=2;i<=number;i++){
            for(int j=i-1;j>=1;j--){
                sum[i]+=sum[j];
            }
        }
        return sum[number];
    }
};

优化版本

  • F(n)=F(n-1)+F(n-2)+…+F(1);
  • F(n-1)=F(n-2)+…+F(1);
  • 两式相减得
    F(n)=2*F(n-1);
class Solution {
public:
    int jumpFloorII(int number) {
        if(number<=1){
            return number;
        }
        int sum,last;
        last=1;
        for(int i=2;i<=number;i++){
            sum=2*last;
            last=sum;
        }
        return sum;
    }
};
weixin295微信小程序选课系统+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值