NLP论文研读
elsieyin
这个作者很懒,什么都没留下…
展开
-
CS224n笔记:contextual word representation
之前的Word Representation方法,Word2Vec, GloVe, fastText等对每个单词仅有一种表示,而通常单词的含义依赖其上下文会有所不同,而且每个单词不仅有一方面特征,而应有各方面特征如语义特征,语法特征等,这一讲集中讨论contextual word representation,主要比较了ELMO,GPT与BERT模型。ElmoL层forward LSTM每层会产生一个依赖于上文的表示h→k,jLM\overrightarrow{\mathbf{h}}_{k, j}^{L原创 2020-07-02 15:41:58 · 369 阅读 · 0 评论 -
Subword模型
之前的Neural Machine Translation基本上都是基于word单词作为基本单位的,但是其缺点是不能很好的解决out-of-vocabulary(OOV即单词不在词汇库里)的情况,且对于单词的一些词法上的修饰(morphology)处理的也不是很好。中文是不带空格分隔的。一个自然的想法就是能够利用比word更基本的组成来建立模型,以更好的解决这些问题。OOV(未登录词)网络流行词:专业词汇:NER词汇:解决方法:新词发现Character-Level Model一种思路是将字原创 2020-06-30 10:44:07 · 712 阅读 · 0 评论 -
CS224n作业
原创 2020-06-24 12:29:52 · 359 阅读 · 0 评论 -
Word2Vec
Related PaperNNLMRNNLM原创 2020-06-24 11:59:41 · 80 阅读 · 0 评论