简单的遗传算法源代码

导读:
   文章由算法源码吧(www.sfcode.cn) 收集
  这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。代码保证尽可能少,实际上也不必查错。对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。注意代码 的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用 Gaussian变异替换均匀变异,可能得到更好的效果。代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。读者可以从ftp.uncc.edu, 目录 coe/evol中的文件prog.c中获得。要求输入的文件应该命名为‘gadata.txt’;系统产生的输出文件为‘galog.txt’。输入的 文件由几行组成:数目对应于变量数。且每一行提供次序——对应于变量的上下界。如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。
  /**************************************************************************/
  /* This is a simple genetic algorithm implementation where the */
  /* evaluation function takes positive values only and the */
  /* fitness of an individual is the same as the value of the */
  /* objective function */
  /**************************************************************************/
  #include
  #include
  #include
  /* Change any of these parameters to match your needs */
  #define POPSIZE 50 /* population size */
  #define MAXGENS 1000 /* max. number of generations */
  #define NVARS 3 /* no. of problem variables */
  #define PXOVER 0.8 /* probability of crossover */
  #define PMUTATION 0.15 /* probability of mutation */
  #define TRUE 1
  #define FALSE 0
  int generation; /* current generation no. */
  int cur_best; /* best individual */
  FILE *galog; /* an output file */
  struct genotype /* genotype (GT), a member of the population */
  {
  double gene[NVARS]; /* a string of variables */
  double fitness; /* GT's fitness */
  double upper[NVARS]; /* GT's variables upper bound */
  double lower[NVARS]; /* GT's variables lower bound */
  double rfitness; /* relative fitness */
  double cfitness; /* cumulative fitness */
  };
  struct genotype population[POPSIZE+1]; /* population */
  struct genotype newpopulation[POPSIZE+1]; /* new population; */
  /* replaces the */
  /* old generation */
  /* Declaration of procedures used by this genetic algorithm */
  void initialize(void);
  double randval(double, double);
  void evaluate(void);
  void keep_the_best(void);
  void elitist(void);
  void select(void);
  void crossover(void);
  void Xover(int,int);
  void swap(double *, double *);
  void mutate(void);
  void report(void);
  /***************************************************************/
  /* Initialization function: Initializes the values of genes */
  /* within the variables bounds. It also initializes (to zero) */
  /* all fitness values for each member of the population. It */
  /* reads upper and lower bounds of each variable from the */
  /* input file `gadata.txt'. It randomly generates values */
  /* between these bounds for each gene of each genotype in the */
  /* population. The format of the input file `gadata.txt' is */
  /* var1_lower_bound var1_upper bound */
  /* var2_lower_bound var2_upper bound ... */
  /***************************************************************/
  void initialize(void)
  {
  FILE *infile;
  int i, j;
  double lbound, ubound;
  if ((infile = fopen("gadata.txt","r"))==NULL)
  {
  fprintf(galog,"/nCannot open input file!/n");
  exit(1);
  }
  /* initialize variables within the bounds */
  for (i = 0; i
  {
  fscanf(infile, "%lf",&lbound);
  fscanf(infile, "%lf",&ubound);
  for (j = 0; j
  {
  population[j].fitness = 0;
  population[j].rfitness = 0;
  population[j].cfitness = 0;
  population[j].lower[i] = lbound;
  population[j].upper[i]= ubound;
  population[j].gene[i] = randval(population[j].lower[i],
  population[j].upper[i]);
  }
  }
  fclose(infile);
  }
  /***********************************************************/
  /* Random value generator: Generates a value within bounds */
  /***********************************************************/
  double randval(double low, double high)
  {
  double val;
  val = ((double)(rand()%1000)/1000.0)*(high - low) + low;
  return(val);
  }
  /*************************************************************/
  /* Evaluation function: This takes a user defined function. */
  /* Each time this is changed, the code has to be recompiled. */
  /* The current function is: x[1]^2-x[1]*x[2]+x[3] */
  /*************************************************************/
  void evaluate(void)
  {
  int mem;
  int i;
  double x[NVARS+1];
  for (mem = 0; mem
  {
  for (i = 0; i   x[i+1] = population[mem].gene[i];
  population[mem].fitness = (x[1]*x[1]) - (x[1]*x[2]) + x[3];
  }
  }
  /***************************************************************/
  /* Keep_the_best function: This function keeps track of the */
  /* best member of the population. Note that the last entry in */
  /* the array Population holds a copy of the best individual */
  /***************************************************************/
  void keep_the_best()
  {
  int mem;
  int i;
  cur_best = 0; /* stores the index of the best individual */
  for (mem = 0; mem
  {
  if (population[mem].fitness >population[POPSIZE].fitness)
  {
  cur_best = mem;
  population[POPSIZE].fitness = population[mem].fitness;
  }
  }
  /* once the best member in the population is found, copy the genes */
  for (i = 0; i
  population[POPSIZE].gene[i] = population[cur_best].gene[i];
  }
  /****************************************************************/
  /* Elitist function: The best member of the previous generation */
  /* is stored as the last in the array. If the best member of */
  /* the current generation is worse then the best member of the */
  /* previous generation, the latter one would replace the worst */
  /* member of the current population */
  /****************************************************************/
  void elitist()
  {
  int i;
  double best, worst; /* best and worst fitness values */
  int best_mem, worst_mem; /* indexes of the best and worst member */
  best = population[0].fitness;
  worst = population[0].fitness;
  for (i = 0; i
  {
  if(population[i].fitness >population[i+1].fitness)
  {
  if (population[i].fitness >= best)
  {
  best = population[i].fitness;
  best_mem = i;
  }
  if (population[i+1].fitness <= worst)
  {
  worst = population[i+1].fitness;
  worst_mem = i + 1;
  }
  }
  else
  {
  if (population[i].fitness <= worst)
  {
  worst = population[i].fitness;
  worst_mem = i;
  }
  if (population[i+1].fitness >= best)
  {
  best = population[i+1].fitness;
  best_mem = i + 1;
  }
  }
  }
  /* if best individual from the new population is better than */
  /* the best individual from the previous population, then */
  /* copy the best from the new population; else replace the */
  /* worst individual from the current population with the */
  /* best one from the previous generation */
  if (best >= population[POPSIZE].fitness)
  {
  for (i = 0; i
  population[POPSIZE].gene[i] = population[best_mem].gene[i];
  population[POPSIZE].fitness = population[best_mem].fitness;
  }
  else
  {
  for (i = 0; i   population[worst_mem].gene[i] = population[POPSIZE].gene[i];
  population[worst_mem].fitness = population[POPSIZE].fitness;
  }
  }
  /**************************************************************/
  /* Selection function: Standard proportional selection for */
  /* maximization problems incorporating elitist model - makes */
  /* sure that the best member survives */
  /**************************************************************/
  void select(void)
  {
  int mem, i, j, k;
  double sum = 0;
  double p;
  /* find total fitness of the population */
  for (mem = 0; mem
  {
  sum += population[mem].fitness;
  }
  /* calculate relative fitness */
  for (mem = 0; mem
  {
  population[mem].rfitness = population[mem].fitness/sum;
  }
  population[0].cfitness = population[0].rfitness;
  /* calculate cumulative fitness */
  for (mem = 1; mem
  {
  population[mem].cfitness = population[mem-1].cfitness +
  population[mem].rfitness;
  }
  /* finally select survivors using cumulative fitness. */
  for (i = 0; i   {
  p = rand()%1000/1000.0;
  if (p
  newpopulation[i] = population[0];
  else
  {
  for (j = 0; j
  if (p >= population[j].cfitness &&
  p
  newpopulation[i] = population[j+1];
  }
  }
  /* once a new population is created, copy it back */
  for (i = 0; i   population[i] = newpopulation[i];
  }
  /***************************************************************/
  /* Crossover selection: selects two parents that take part in */
  /* the crossover. Implements a single point crossover */
  /***************************************************************/
  void crossover(void)
  {
  int i, mem, one;
  int first = 0; /* count of the number of members chosen */
  double x;
  for (mem = 0; mem
  {
  x = rand()%1000/1000.0;
  if (x
  {
  ++first;
  if (first % 2 == 0)
  Xover(one, mem);
  else
  one = mem;
  }
  }
  }
  /**************************************************************/
  /* Crossover: performs crossover of the two selected parents. */
  /**************************************************************/
  void Xover(int one, int two)
  {
  int i;
  int point; /* crossover point */
  /* select crossover point */
  if(NVARS >1)
  {
  if(NVARS == 2)
  point = 1;
  else
  point = (rand() % (NVARS - 1)) + 1;
  for (i = 0; i   swap(&population[one].gene[i], &population[two].gene[i]);
  }
  }
  /*************************************************************/
  /* Swap: A swap procedure that helps in swapping 2 variables */
  /*************************************************************/
  void swap(double *x, double *y)
  {
  double temp;
  temp = *x;
  *x = *y;
  *y = temp;
  }
  /**************************************************************/
  /* Mutation: Random uniform mutation. A variable selected for */
  /* mutation is replaced by a random value between lower and */
  /* upper bounds of this variable */
  /**************************************************************/
  void mutate(void)
  {
  int i, j;
  double lbound, hbound;
  double x;
  for (i = 0; i   for (j = 0; j
  {
  x = rand()%1000/1000.0;
  if (x
  {
  /* find the bounds on the variable to be mutated */
  lbound = population[i].lower[j];
  hbound = population[i].upper[j];
  population[i].gene[j] = randval(lbound, hbound);
  }
  }
  }
  /***************************************************************/
  /* Report function: Reports progress of the simulation. Data */
  /* dumped into the output file are separated by commas */
  /***************************************************************/
  void report(void)
  {
  int i;
  double best_val; /* best population fitness */
  double avg; /* avg population fitness */
  double stddev; /* std. deviation of population fitness */
  double sum_square; /* sum of square for std. calc */
  double square_sum; /* square of sum for std. calc */
  double sum; /* total population fitness */
  sum = 0.0;
  sum_square = 0.0;
  for (i = 0; i   {
  sum += population[i].fitness;
  sum_square += population[i].fitness * population[i].fitness;
  }
  avg = sum/(double)POPSIZE;
  square_sum = avg * avg * POPSIZE;
  stddev = sqrt((sum_square - square_sum)/(POPSIZE - 1));
  best_val = population[POPSIZE].fitness;
  fprintf(galog, "/n%5d, %6.3f, %6.3f, %6.3f /n/n", generation,
  best_val, avg, stddev);
  }
  /**************************************************************/
  /* Main function: Each generation involves selecting the best */
  /* members, performing crossover &mutation and then */
  /* evaluating the resulting population, until the terminating */
  /* condition is satisfied */
  /**************************************************************/
  void main(void)
  {
  int i;
  if ((galog = fopen("galog.txt","w"))==NULL)
  {
  exit(1);
  }
  generation = 0;
  fprintf(galog, "/n generation best average standard /n");
  fprintf(galog, " number value fitness deviation /n");
  initialize();
  evaluate();
  keep_the_best();
  while(generation
  {
  generation++;
  select();
  crossover();
  mutate();
  report();
  evaluate();
  elitist();
  }
  fprintf(galog,"/n/n Simulation completed/n");
  fprintf(galog,"/n Best member: /n");
  for (i = 0; i   {
  fprintf (galog,"/n var(%d) = %3.3f",i,population[POPSIZE].gene[i]);
  }
  fprintf(galog,"/n/n Best fitness = %3.3f",population[POPSIZE].fitness);
  fclose(galog);
  printf("Success/n");
   本文链接网址

本文转自
http://www.sfcode.cn/soft/00538835.htm
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值