题意:对于函数F(x) = 6 * x^7+8*x^6+7*x^3+5*x^2-y*x,给定一个y值,求当x在1~100时F(x)的最小值。
思路:先对F(x)求导,可以看出导数单调,求出x取何值时导数为0,则该x就是函数最小时x的取值。用二分法查找该x。
感悟:其实应该所做这样的问题,开阔一下思维,有些题看起来很简单,但你用的方法却不一定是最好的,看来简单题也有它的学问在里面,而我最大的感悟就是,有时候模板不一定最优,虽然能及很所算法,并灵活运用的人已经可以称作大神,但我更佩服做每道题都动脑筋寻找最优答案的人。那就努力打好基础吧,然后做一个思维活跃的人。
AC代码:
#include<iostream>
#include<math.h>
#include<iomanip>
using namespace std;
double f (double x,double y)
{
return 42*pow(x,6)+48*pow(x,5)+21*pow(x,2)+10*x-y;
}
double F(double x ,double y)
{
return 6*pow(x,7)+8*pow(x,6)+7*pow(x,3)+5*pow(x,2)-x*y;
}
int main()
{
int t;
double a,m,l,h;
cin>>t;
while (t--)
{
cin>>a;
l=0;h=100;
m=(l+h)/2;
while ( fabs (f(m,a))>0.00001)
{
if (f(m,a)>0)
h=m;
else
l=m;
m=(l+h)/2;
}
cout<<fixed<<setprecision(4)<<F(m,a)<<endl;
}
return 0;
}