模拟幅度调制系统抗干扰性能仿真分析

该博客详细分析了AM、DSB-SC和SSB模拟调制系统的抗干扰性能。通过MATLAB仿真,研究了不同调制方式在加性高斯白噪声环境下的性能,并比较了三种调制方式的抗干扰能力。结果显示,DSB-SC系统的抗干扰性能优于SSB和AM,且DSB-SC的输出信噪比为定值2,而AM系统的抗干扰能力与基带信号功率有关。
摘要由CSDN通过智能技术生成

1.引言

1.1 研究目的:

  1. 理解通信系统模型,掌握信号时域与频域的特性分析方法,能够分析模拟、数字基带以及数字频带等各种通信系统对信号时域以及频域特性的变换关系。
  2. 理解加性高斯白噪声信道与频带受限信道,理解匹配滤波接收机与相干接收机的工作原理,掌握带宽无限与频带受限信道条件下传输波形的设计方法。
  3. 理解模型通信系统接收机输入与输出信噪比计算方法,能够用信噪比对模拟通信系统性能进行分析。
  4. 能够根据系统模型实现链路级仿真,掌握仿真参数设置原则,分析信号的时域以及频域特性,获得误码性能仿真结果。

1.2 研究方法:

基于MATLAB的仿真实现

1.3 主要内容

模拟仿真AM、DSB-SC、SSB三种幅度调制器,掌握其调制原理和设计思想。分析高斯白噪声对模拟调制系统的影响

2.系统模型

2.1 AM幅度调制

  • 其时域表达式为: s A M ( t ) = A c [ 1 + m ( t ) ] c o s 2 π f c t ) (2.1.1) s_{AM}(t) =A_c[1+m(t)]cos2\pi f_ct \tag{2.1.1}) sAMt=Ac[1+m(t)]cos2πfct(2.1.1)

    其中 m ( t ) m(t) m(t)为基带信号, s A M ( t ) s_{AM}(t) sAM(t)为调制信号

  • 其频域表达式为: S A M ( f ) = A c 2 [ δ ( f − f c ) + δ ( f + f c ) ] + A c 2 [ M ( f − f c ) + M ( f + f c ) ] (2.1.2) S_{AM} (f)=\frac{A_c}{2}[\delta(f-f_c)+\delta(f+f_c)]+\frac{A_c}{2}[M(f-f_c)+M(f+f_c)] \tag{2.1.2} SAMf=2Ac[δ(ffc)+δ(f+fc)]+2Ac[M(ffc)+M(f+fc)](2.1.2)

  • 其模型图:


    图1 Am幅度调制模型图
    图2.1.1 AM幅度调制模型图

-其解调模型图:

在这里插入图片描述

图2.1.2 AM幅度调制相干解调模型图

2.2 抑制载波双边带调幅(DSB-SC)

  • 其时域表达式: s D S B ( t ) = A c m ( t ) c o s 2 π f c t (2.2.1) s_{DSB}(t) =A_cm(t)cos2\pi f_ct \tag{2.2.1} sDSBt=Acm(t)cos2πfct(2.2.1)

  • 其频域表达式: S D S B ( f ) = A c 2 [ M ( f − f c ) + M ( f + f c ) ] (2.2.2) S_{DSB} (f)=\frac{A_c}{2}[M(f-f_c)+M(f+f_c)] \tag{2.2.2} SDSBf=2Ac[M(ffc)+M(f+fc)](2.2.2)

  • 模型图:

    在这里插入图片描述

图2.2.1 DSB-SC幅度调制模型图
  • 相干解调模型:

    在这里插入图片描述
图2.2.1 DSB-SC幅度调制相干解调模型图

2.3 单边带调幅(SSB)

由于DSB的频谱上边带和下边带是一样的,可以去掉其中一个边带,即为单边带调制,本文将以上边带调制为例。SSB信号有两种方法产生,滤波法和相移法。

  • 滤波法:
    在这里插入图片描述
图2.3.1 滤波法SSB信号调制器

H S S B ( f ) H_{SSB}(f) HSSB(f)为单边带滤波器的传输函数,
若它具有如下理想高通特性:
H U S S B = { 1 ,   ∣ f ∣ > f c 0 ,   ∣ f ∣ ≤ f c (2.3.1) H_{USSB}=\begin{cases} 1,&\text { $\vert f \vert\gt f_c$}\\ 0,&\text{ $\vert f \vert\le f_c$} \end{cases} \tag{2.3.1} HUSSB={ 10 ∣f>fc ∣ffc(2.3.1)
则可滤除下边带,保留上边带( USB);


在这里插入图片描述

图2.3.2滤波器产生上边带
  • 相移法:
    在这里插入图片描述
图2.3.3 相移法模型
  • 其时域表达式: s S S B ( t ) = A c 2 [ m ( t ) c o s 2 π f c t ∓ m ^ ( t ) s i n 2 π f c t ] (2.3.2) s_{SSB}(t) =\frac{A_c}{2}[m(t)cos2\pi f_ct \mp \hat m(t)sin2\pi f_ct ] \tag{2.3.2} sSSBt=2Ac[m(t)cos2πfctm^(t)sin2πfct](2.3.2)
  • 其频域表达式: S S S B ( f ) = A c 2 [ M ( f − f c ) + M ( f + f c ) ] ∗ H U S S B ( f ) (2.3.3) S_{SSB} (f)=\frac{A_c}{2}[M(f-f_c)+M(f+f_c)]*H_{USSB}(f) \tag{2.3.3} SSSBf=2Ac[M(ffc)+M(f+fc)]HUSSB(f)(2.3.3)
  • 其相干解调模型:

    在这里插入图片描述
图2.3.4SSB相干解调模型

3.抗干扰性能理论分析

3.1有噪声AM相干解调系统

在这里插入图片描述

图3.1.1有噪声AM相干解调模型

对于AM信号一般采用相干解调的方式(如图3.1.1),利用相干解调器进行解调。
对于常规的AM信号,接收信号带宽 B A M = B T = 2 B ( B 为 m ( t ) 带 宽 ) (3.1.1) B_{AM}=B_T=2B(B为m(t)带宽) \tag{3.1.1} BAM=BT=2BBm(t))(3.1.1)
其功率为 P m = A c 2 2 [ 1 + m 2 ( t ) ‾ ] (3.1.2) P_{m}=\frac{A_c^2}{2}[1+\overline {m^2(t)}] \tag{3.1.2} Pm=2Ac2[1+m2(t)](3.1.2)
可知 s ( t ) s(t) s(t)的时域表达式:
s ( t ) = A c [ m ( t ) + 1 ] c o s 2 π f c t (3.1.3) s(t)=A_c[m(t)+1]cos2\pi f_ct \tag{3.1.3} s(t)=Ac[m(t)+1]cos2πfct(3.1.3)
通过乘法器:
s d ( t ) = A c 2 [ m ( t ) + 1 ] [ 1 + c o s 4 π f c t ] (3.1.4) s_d(t)=\frac{A_c}{2}[m(t)+1][1+cos4\pi f_ct] \tag{3.1.4} sd(t)=2Ac[m(t)+1][1+cos4πfct](3.1.4)
输出:
s o ( t ) = A c 2 [ m ( t ) ] (3.1.5) s_o(t)=\frac{A_c}{2}[m(t) ] \tag{3.1.5} so(t)=2Ac[m(t)](3.1.5)
其白噪声 n ( t ) n(t) n(t)表达式为:
n ( t ) = n c ( t ) c o s 2 π f c t − n s ( t ) s i n 2 π f c t (3.1.6) n(t)=n_c(t)cos2\pi f_ct-n_s(t)sin2\pi f_ct \tag{3.1.6} n(t)=nc(t)cos2πfctns(t)sin2πfct(3.1.6)
通过乘法器后:
n d ( t ) = n c ( t ) c o s 2 2 π f c t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值