文章目录
1.引言
1.1 研究目的:
- 理解通信系统模型,掌握信号时域与频域的特性分析方法,能够分析模拟、数字基带以及数字频带等各种通信系统对信号时域以及频域特性的变换关系。
- 理解加性高斯白噪声信道与频带受限信道,理解匹配滤波接收机与相干接收机的工作原理,掌握带宽无限与频带受限信道条件下传输波形的设计方法。
- 理解模型通信系统接收机输入与输出信噪比计算方法,能够用信噪比对模拟通信系统性能进行分析。
- 能够根据系统模型实现链路级仿真,掌握仿真参数设置原则,分析信号的时域以及频域特性,获得误码性能仿真结果。
1.2 研究方法:
基于MATLAB的仿真实现
1.3 主要内容
模拟仿真AM、DSB-SC、SSB三种幅度调制器,掌握其调制原理和设计思想。分析高斯白噪声对模拟调制系统的影响
2.系统模型
2.1 AM幅度调制
-
其时域表达式为: s A M ( t ) = A c [ 1 + m ( t ) ] c o s 2 π f c t ) (2.1.1) s_{AM}(t) =A_c[1+m(t)]cos2\pi f_ct \tag{2.1.1}) sAM(t)=Ac[1+m(t)]cos2πfct)(2.1.1)
其中 m ( t ) m(t) m(t)为基带信号, s A M ( t ) s_{AM}(t) sAM(t)为调制信号
-
其频域表达式为: S A M ( f ) = A c 2 [ δ ( f − f c ) + δ ( f + f c ) ] + A c 2 [ M ( f − f c ) + M ( f + f c ) ] (2.1.2) S_{AM} (f)=\frac{A_c}{2}[\delta(f-f_c)+\delta(f+f_c)]+\frac{A_c}{2}[M(f-f_c)+M(f+f_c)] \tag{2.1.2} SAM(f)=2Ac[δ(f−fc)+δ(f+fc)]+2Ac[M(f−fc)+M(f+fc)](2.1.2)
-
其模型图:
图2.1.1 AM幅度调制模型图
-其解调模型图:
2.2 抑制载波双边带调幅(DSB-SC)
-
其时域表达式: s D S B ( t ) = A c m ( t ) c o s 2 π f c t (2.2.1) s_{DSB}(t) =A_cm(t)cos2\pi f_ct \tag{2.2.1} sDSB(t)=Acm(t)cos2πfct(2.2.1)
-
其频域表达式: S D S B ( f ) = A c 2 [ M ( f − f c ) + M ( f + f c ) ] (2.2.2) S_{DSB} (f)=\frac{A_c}{2}[M(f-f_c)+M(f+f_c)] \tag{2.2.2} SDSB(f)=2Ac[M(f−fc)+M(f+fc)](2.2.2)
-
模型图:
- 相干解调模型:
2.3 单边带调幅(SSB)
由于DSB的频谱上边带和下边带是一样的,可以去掉其中一个边带,即为单边带调制,本文将以上边带调制为例。SSB信号有两种方法产生,滤波法和相移法。
- 滤波法:
H S S B ( f ) H_{SSB}(f) HSSB(f)为单边带滤波器的传输函数,
若它具有如下理想高通特性:
H U S S B = { 1 , ∣ f ∣ > f c 0 , ∣ f ∣ ≤ f c (2.3.1) H_{USSB}=\begin{cases} 1,&\text { $\vert f \vert\gt f_c$}\\ 0,&\text{ $\vert f \vert\le f_c$} \end{cases} \tag{2.3.1} HUSSB={
1,0, ∣f∣>fc ∣f∣≤fc(2.3.1)
则可滤除下边带,保留上边带( USB);
- 相移法:
- 其时域表达式: s S S B ( t ) = A c 2 [ m ( t ) c o s 2 π f c t ∓ m ^ ( t ) s i n 2 π f c t ] (2.3.2) s_{SSB}(t) =\frac{A_c}{2}[m(t)cos2\pi f_ct \mp \hat m(t)sin2\pi f_ct ] \tag{2.3.2} sSSB(t)=2Ac[m(t)cos2πfct∓m^(t)sin2πfct](2.3.2)
- 其频域表达式: S S S B ( f ) = A c 2 [ M ( f − f c ) + M ( f + f c ) ] ∗ H U S S B ( f ) (2.3.3) S_{SSB} (f)=\frac{A_c}{2}[M(f-f_c)+M(f+f_c)]*H_{USSB}(f) \tag{2.3.3} SSSB(f)=2Ac[M(f−fc)+M(f+fc)]∗HUSSB(f)(2.3.3)
- 其相干解调模型:
3.抗干扰性能理论分析
3.1有噪声AM相干解调系统
对于AM信号一般采用相干解调的方式(如图3.1.1),利用相干解调器进行解调。
对于常规的AM信号,接收信号带宽 B A M = B T = 2 B ( B 为 m ( t ) 带 宽 ) (3.1.1) B_{AM}=B_T=2B(B为m(t)带宽) \tag{3.1.1} BAM=BT=2B(B为m(t)带宽)(3.1.1)。
其功率为 P m = A c 2 2 [ 1 + m 2 ( t ) ‾ ] (3.1.2) P_{m}=\frac{A_c^2}{2}[1+\overline {m^2(t)}] \tag{3.1.2} Pm=2Ac2[1+m2(t)](3.1.2)
可知 s ( t ) s(t) s(t)的时域表达式:
s ( t ) = A c [ m ( t ) + 1 ] c o s 2 π f c t (3.1.3) s(t)=A_c[m(t)+1]cos2\pi f_ct \tag{3.1.3} s(t)=Ac[m(t)+1]cos2πfct(3.1.3)
通过乘法器:
s d ( t ) = A c 2 [ m ( t ) + 1 ] [ 1 + c o s 4 π f c t ] (3.1.4) s_d(t)=\frac{A_c}{2}[m(t)+1][1+cos4\pi f_ct] \tag{3.1.4} sd(t)=2Ac[m(t)+1][1+cos4πfct](3.1.4)
输出:
s o ( t ) = A c 2 [ m ( t ) ] (3.1.5) s_o(t)=\frac{A_c}{2}[m(t) ] \tag{3.1.5} so(t)=2Ac[m(t)](3.1.5)
其白噪声 n ( t ) n(t) n(t)表达式为:
n ( t ) = n c ( t ) c o s 2 π f c t − n s ( t ) s i n 2 π f c t (3.1.6) n(t)=n_c(t)cos2\pi f_ct-n_s(t)sin2\pi f_ct \tag{3.1.6} n(t)=nc(t)cos2πfct−ns(t)sin2πfct(3.1.6)
通过乘法器后:
n d ( t ) = n c ( t ) c o s 2 2 π f c t