python数据分析概述

理解数据

需要分析的数据分为:

  1. 结构化的数据集合
  2. 半结构化的数据集合
  3. 非结构化的数据集合

大部分数据都能被转化为更适合分析和建模的结构化形式。
主要的的结构化数据

  1. 表格型数据
    其中各列为不同类型的数据(字符串、数值、日期等);
    eg:
    保存在关系型数据库中的数据;
    以制表符/逗号为分隔符的文本文件中的数据。
  2. 多维数据(矩阵
    多种形式:一维、二维、三维;
  3. 通过关键里相互联系的多个表
    如sql中的主外键
  4. 间隔平均不平均的时间序列

数据分析

概念:
数据分析是指用适当的统计方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。

方法:

  1. 描述型分析;
  2. 诊断型分析;
  3. 预测型分析;
  4. 指令型分析;

一般流程:

  1. 需求分析;
  2. 数据获取;
  3. 数据预处理;
  4. 数据分析与建模;
  5. 模型评价和优化;
  6. 部署。

数据分析工具python

主流的数据分析语言:R/Python
在这里插入图片描述
Python的优势:
在这里插入图片描述

重要的Python数据分析类库

NumPy

在这里插入图片描述
在这里插入图片描述
Pandas
在这里插入图片描述
Matplotlib
在这里插入图片描述
SciPy
在这里插入图片描述
在这里插入图片描述
scikit-learn
在这里插入图片描述
stats models
在这里插入图片描述

集成开发环境和文本编辑器

在这里插入图片描述

使用Jupyter Notebook

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

emmaing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值