题面
解法
高斯消元对求解期望dp的经典应用
- 显然,我们不能直接求最后异或的期望,但是我们可以对异或值按位考虑
- 那么,问题就转化成求出每一位为 1 1 的概率,然后最后的答案即为
- 设 f[i] f [ i ] 为点 i i 走到点某一位二进制位为 1 1 的概率,具体是哪一位二进制位直接枚举即可
- 那么,考虑一下如何转移。设与 i i 存在连边,为边 (i,j) ( i , j ) 的权值,如果 v v 的那一位为,那么显然就应该乘上 j j 到那一位为 0 0 的概率,即,否则 f[i]+=f[j]×p f [ i ] + = f [ j ] × p
- 因为这个是一个无向图,所以会存在后效性,那么我们就可以使用高斯消元来求解
- 时间复杂度: O(30n3) O ( 30 n 3 )
【注意事项】
- 对于自环不要将出度计算2次
- 尽量注意精度问题,其实感觉应该没什么问题
代码
#include <bits/stdc++.h>
#define double long double
#define eps 1e-9
#define N 110
using namespace std;
struct Edge {
int next, num, v;
} e[N * N * 16];
int cnt, s[N];
double a[N][N];
void add(int x, int y, int v) {
e[++cnt] = (Edge) {e[x].next, y, v};
e[x].next = cnt;
}
void gauss(int n) {
for (int i = 1; i <= n; i++) {
if (fabs(a[i][i]) <= eps)
for (int j = i + 1; j <= n; j++)
if (fabs(a[j][i]) > eps)
for (int k = 1; k <= n + 1; k++) swap(a[i][k], a[j][k]);
for (int j = i + 1; j <= n + 1; j++) a[i][j] /= a[i][i];
for (int j = 1; j <= n; j++) {
if (i == j) continue;
for (int k = i + 1; k <= n + 1; k++)
a[j][k] -= a[j][i] * a[i][k];
}
}
}
int main() {
ios::sync_with_stdio(false);
int n, m; cin >> n >> m; cnt = n;
for (int i = 1; i <= m; i++) {
int x, y, v;
cin >> x >> y >> v;
if (x == y) s[x]++, add(x, y, v);
else s[x]++, s[y]++, add(x, y, v), add(y, x, v);
}
double ans = 0;
for (int l = 0; l <= 30; l++) {
memset(a, 0, sizeof(a));
for (int i = 1; i < n; i++) {
a[i][i] = 1;
for (int p = e[i].next; p; p = e[p].next) {
int k = e[p].num, v = e[p].v;
if (((v >> l) & 1) == 1) {
a[i][k] += 1.0 / s[i];
if (k != n) a[i][n] += 1.0 / s[i];
} else if (k != n) a[i][k] -= 1.0 / s[i];
}
}
gauss(n - 1); ans += (1 << l) * a[1][n];
}
cout << fixed << setprecision(3) << ans << "\n";
return 0;
}