bzoj 2337 [HNOI2011]XOR和路径 期望dp+高斯消元

题面

题目传送门

解法

高斯消元对求解期望dp的经典应用

  • 显然,我们不能直接求最后异或的期望,但是我们可以对异或值按位考虑
  • 那么,问题就转化成求出每一位为 1 1 的概率,然后最后的答案即为Ei×2i
  • f[i] f [ i ] 为点 i i 走到点n某一位二进制位为 1 1 的概率,具体是哪一位二进制位直接枚举即可
  • 那么,考虑一下如何转移。设j i i 存在连边,v为边 (i,j) ( i , j ) 的权值,如果 v v 的那一位为1,那么显然就应该乘上 j j n那一位为 0 0 的概率,即f[i]+=(1f[j])×p,否则 f[i]+=f[j]×p f [ i ] + = f [ j ] × p
  • 因为这个是一个无向图,所以会存在后效性,那么我们就可以使用高斯消元来求解
  • 时间复杂度: O(30n3) O ( 30 n 3 )

【注意事项】

  • 对于自环不要将出度计算2次
  • 尽量注意精度问题,其实感觉应该没什么问题

代码

#include <bits/stdc++.h>
#define double long double
#define eps 1e-9
#define N 110
using namespace std;
struct Edge {
    int next, num, v;
} e[N * N * 16];
int cnt, s[N];
double a[N][N];
void add(int x, int y, int v) {
    e[++cnt] = (Edge) {e[x].next, y, v};
    e[x].next = cnt;
}
void gauss(int n) {
    for (int i = 1; i <= n; i++) {
        if (fabs(a[i][i]) <= eps)
            for (int j = i + 1; j <= n; j++)
                if (fabs(a[j][i]) > eps)
                    for (int k = 1; k <= n + 1; k++) swap(a[i][k], a[j][k]);
        for (int j = i + 1; j <= n + 1; j++) a[i][j] /= a[i][i];
        for (int j = 1; j <= n; j++) {
            if (i == j) continue;
            for (int k = i + 1; k <= n + 1; k++)
                a[j][k] -= a[j][i] * a[i][k];
        }
    }
}
int main() {
    ios::sync_with_stdio(false);
    int n, m; cin >> n >> m; cnt = n;
    for (int i = 1; i <= m; i++) {
        int x, y, v;
        cin >> x >> y >> v;
        if (x == y) s[x]++, add(x, y, v);
            else s[x]++, s[y]++, add(x, y, v), add(y, x, v);
    }
    double ans = 0;
    for (int l = 0; l <= 30; l++) {
        memset(a, 0, sizeof(a));
        for (int i = 1; i < n; i++) {
            a[i][i] = 1;
            for (int p = e[i].next; p; p = e[p].next) {
                int k = e[p].num, v = e[p].v;
                if (((v >> l) & 1) == 1) {
                    a[i][k] += 1.0 / s[i];
                    if (k != n) a[i][n] += 1.0 / s[i];
                } else if (k != n) a[i][k] -= 1.0 / s[i];
            }
        }
        gauss(n - 1); ans += (1 << l) * a[1][n];
    }
    cout << fixed << setprecision(3) << ans << "\n";
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值