bzoj 1969 [Ahoi2005]LANE 航线规划 tarjan+树剖+线段树

题面

题目传送门

解法

挺数据结构的一道题……

  • 显然,对于删边我们并不是那么容易处理,那么我们就不妨把操作离线下来,倒着进行加边的操作
  • 因为最后全部操作完之后保证图连通,那么我们可以对整张图按照边双缩点,然后整张图就显然地变成了一棵树
  • 询问有多少条边删去后能使 x,y x , y 不连通,显然就是这棵树上 x,y x , y 的路径长
  • 连接 x,y x , y 这条边,可以发现就是把 x,y x , y 这条路径上所有边的长度变成0
  • 树剖+线段树实现即可(尽管可以LCT)
  • 时间复杂度: O(mlog2n) O ( m log 2 ⁡ n ) O(mlogn) O ( m log ⁡ n ) (LCT)

代码

#include <bits/stdc++.h>
#define mp make_pair
#define N 100010
using namespace std;
template <typename node> void chkmax(node &x, node y) {x = max(x, y);}
template <typename node> void chkmin(node &x, node y) {x = min(x, y);}
template <typename node> void read(node &x) {
    x = 0; int f = 1; char c = getchar();
    while (!isdigit(c)) {if (c == '-') f = -1; c = getchar();}
    while (isdigit(c)) x = x * 10 + c - '0', c = getchar(); x *= f;
}
int n, m, len, cnt, tot, Time;
int d[N], son[N], top[N], dfn[N], low[N], siz[N], col[N], f[N], st[N], in[N], ans[N], val[N], num[N], xx[N], yy[N];
vector <int> E[N];
struct Que {
    int k, x, y, id;
} que[N];
struct Edge {
    int next, num, v;
} e[N * 3];
struct SegmentTree {
    struct Node {
        int l, r, fl, sum;
    } t[N * 4];
    void update(int k) {t[k].sum = t[k << 1].sum + t[k << 1 | 1].sum;}
    void build(int k, int l, int r) {
        t[k] = (Node) {l, r, -1, 0};
        if (l == r) {t[k].sum = val[num[l]]; return;}
        int mid = (l + r) >> 1;
        build(k << 1, l, mid), build(k << 1 | 1, mid + 1, r);
        update(k);
    }
    void pushdown(int k, int l, int r) {
        int x = t[k].fl, mid = (l + r) >> 1; t[k].fl = -1;
        int lc = k << 1, rc = k << 1 | 1;
        t[lc].fl = t[rc].fl = x;
        t[lc].sum = (mid - l + 1) * x, t[rc].sum = (r - mid) * x;
    }
    void modify(int k, int L, int R, int v) {
        int l = t[k].l, r = t[k].r;
        if (L <= l && r <= R) {
            t[k].fl = v, t[k].sum = (r - l + 1) * v;
            return;
        }
        if (t[k].fl != -1) pushdown(k, l, r);
        int mid = (l + r) >> 1;
        if (L <= mid && mid < R) modify(k << 1, L, mid, v), modify(k << 1 | 1, mid + 1, R, v);
        if (R <= mid) modify(k << 1, L, R, v);
        if (L > mid) modify(k << 1 | 1, L, R, v);
        update(k);
    }
    int query(int k, int L, int R) {
        if (L > R) return 0;
        int l = t[k].l, r = t[k].r;
        if (L <= l && r <= R) return t[k].sum;
        if (t[k].fl != -1) pushdown(k, l, r);
        int mid = (l + r) >> 1;
        if (R <= mid) return query(k << 1, L, R);
        if (L > mid) return query(k << 1 | 1, L, R);
        return query(k << 1, L, mid) + query(k << 1 | 1, mid + 1, R);
    }
} T;
void add(int x, int y, int v) {
    e[++cnt] = (Edge) {e[x].next, y, v};
    e[x].next = cnt;
}
void tarjan(int x, int las) {
    dfn[x] = low[x] = ++Time;
    st[++len] = x, in[x] = 1;
    for (int i = 0; i < E[x].size(); i++) {
        int k = E[x][i];
        if (k == las) continue;
        if (!dfn[k]) tarjan(k, x), chkmin(low[x], low[k]);
            else if (in[k]) chkmin(low[x], dfn[k]);
    }
    if (low[x] == dfn[x]) {
        col[x] = ++tot;
        while (st[len] != x) col[st[len]] = tot, in[st[len--]] = 0;
        in[st[len--]] = 0;
    }
}
void dfs1(int x, int fa) {
    siz[x] = 1, d[x] = d[fa] + 1, f[x] = fa;
    for (int p = e[x].next; p; p = e[p].next) {
        int k = e[p].num, v = e[p].v;
        if (k == fa) continue; val[k] = v;
        dfs1(k, x); siz[x] += siz[k];
        if (siz[son[x]] < siz[k]) son[x] = k;
    }
}
void dfs2(int x, int tp) {
    top[x] = tp, dfn[x] = ++Time, num[Time] = x;
    if (!son[x]) return; dfs2(son[x], tp);
    for (int p = e[x].next; p; p = e[p].next) {
        int k = e[p].num;
        if (k == f[x] || k == son[x]) continue;
        dfs2(k, k);
    }
}
int lca(int x, int y) {
    int fx = top[x], fy = top[y];
    while (fx != fy) {
        if (d[fx] < d[fy]) swap(fx, fy), swap(x, y);
        x = f[fx], fx = top[x];
    }
    if (d[x] > d[y]) swap(x, y); return x;
}
void Modify(int x, int y, int v) {
    int fx = top[x], fy = top[y];
    while (fx != fy) {
        if (d[fx] < d[fy]) swap(fx, fy), swap(x, y);
        T.modify(1, dfn[fx], dfn[x], v);
        x = f[fx], fx = top[x];
    }
    if (d[x] != d[y]) T.modify(1, dfn[y] + 1, dfn[x], v);
}
int Query(int x, int y) {
    int fx = top[x], fy = top[y], ret = 0;
    while (fx != fy) {
        if (d[fx] < d[fy]) swap(x, y), swap(fx, fy);
        ret += T.query(1, dfn[fx], dfn[x]);
        x = f[fx], fx = top[x];
    }
    if (d[x] != d[y]) ret += T.query(1, dfn[y] + 1, dfn[x]);
    return ret;
}
int main() {
    read(n), read(m);
    for (int i = 1; i <= m; i++)
        read(xx[i]), read(yy[i]);
    int k, q = 0, sum = 0; read(k);
    map <pair <int, int>, int> h;
    while (k != -1) {
        int x, y; read(x), read(y);
        que[++q] = (Que) {k, x, y, 0};
        if (k == 0) h[make_pair(x, y)] = h[make_pair(y, x)] = 1;
            else que[q].id = ++sum;
        read(k);
    }
    for (int i = 1; i <= m; i++)
        if (!h.count(make_pair(xx[i], yy[i]))) E[xx[i]].push_back(yy[i]), E[yy[i]].push_back(xx[i]);
    tarjan(1, 0); cnt = n, Time = 0;
    for (int i = 1; i <= n; i++)
        for (int j = 0; j < E[i].size(); j++) {
            int k = E[i][j];
            if (col[i] == col[k]) continue;
            add(col[i], col[k], 1);
        }
    dfs1(1, 0), dfs2(1, 0);
    T.build(1, 1, tot);
    for (int i = q; i; i--) {
        int k = que[i].k, x = que[i].x, y = que[i].y;
        if (k == 0) {
            int z = lca(col[x], col[y]);
            Modify(col[x], z, 0), Modify(col[y], z, 0);
        } else {
            int z = lca(col[x], col[y]);
            ans[que[i].id] = Query(col[x], z) + Query(col[y], z);
        }
    }
    for (int i = 1; i <= sum; i++) cout << ans[i] << "\n";
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值