bzoj 4565 [Haoi2016]字符合并 状压dp+区间dp

题面

题目传送门

解法

  • 看到 K ≤ 8 K≤8 K8,应该会比较直观地想到状压dp
  • 考虑一段区间,我们一定是把这段区间合并到不能继续合并为止,这样一定是最优的
  • 那么,我们可以设计一下状态: f [ i ] [ j ] [ S ] f[i][j][S] f[i][j][S]表示将区间 [ i , j ] [i,j] [i,j]合并成二进制数 S S S的最大价值
  • 考虑如何枚举中间的分界点 k k k,显然是当且仅当区间 [ k , j ] [k,j] [k,j]这段区间合并之后恰好为 S S S的末尾几位
  • 考虑这样做的正确性,我们在dp的时候一定做的都是正确合法的方案,而每一个正确合法的方案也一定会被dp到
  • 时间复杂度: O ( n 3 2 K ) O(n^32^K) O(n32K)

【注意事项】

  • 请注意常数因子对程序效率带来的影响,即每一次转移的时候尽量使用那些合法的状态
  • 在区间 [ i , j ] [i,j] [i,j]恰好能合并成一个数的时候需要特别处理一下,注意不能直接用 f f f数组来迭代,否则可能会出现使用本来不合法的状态来更新其他的状态的情况

代码

#include <bits/stdc++.h>
#define LL long long
#define inf 1 << 30
#define N 310
using namespace std;
template <typename node> void chkmax(node &x, node y) {x = max(x, y);}
template <typename node> void chkmin(node &x, node y) {x = min(x, y);}
template <typename node> void read(node &x) {
	x = 0; int f = 1; char c = getchar();
	while (!isdigit(c)) {if (c == '-') f = -1; c = getchar();}
	while (isdigit(c)) x = x * 10 + c - '0', c = getchar(); x *= f;
}
int a[N], c[1 << 8];
LL w[1 << 8], f[N][N][1 << 8];
int main() {
	int n, K; read(n), read(K);
	for (int i = 1; i <= n; i++) {
		char c = getchar();
		while (!isdigit(c)) c = getchar();
		a[i] = c - '0';
	}
	for (int i = 0; i < (1 << K); i++) read(c[i]), read(w[i]);
	for (int i = 1; i <= n; i++)
		for (int j = i; j <= n; j++)
			for (int S = 0; S < (1 << K); S++)
				f[i][j][S] = -inf;
	for (int i = 1; i <= n; i++) f[i][i][a[i]] = 0;
	for (int l = 2; l <= n; l++) {
		for (int i = 1; i <= n - l + 1; i++) {
			int j = i + l - 1, tmp = l;
			while (tmp >= K) tmp -= K - 1;
			for (int k = j; k > i; k -= K - 1) {
				for (int S = 0; S < (1 << K); S++) {
					if (f[i][k - 1][S] < 0) continue;
					if (f[k][j][0] >= 0) chkmax(f[i][j][S << 1], f[i][k - 1][S] + f[k][j][0]);
					if (f[k][j][1] >= 0) chkmax(f[i][j][S << 1 | 1], f[i][k - 1][S] + f[k][j][1]);
				}
			}
			if (tmp == 1) {
				LL mx[2] = {-inf, -inf};
				for (int S = 0; S < (1 << K); S++)
					if (f[i][j][S] >= 0) chkmax(mx[c[S]], f[i][j][S] + w[S]);
				f[i][j][0] = mx[0], f[i][j][1] = mx[1];
			}
		}
	}
	LL ans = 0;
	for (int S = 0; S < (1 << K); S++)
		chkmax(ans, f[1][n][S]);
	cout << ans << "\n";
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值