bzoj 5252 [2018多省省队联测]林克卡特树 树形dp+凸优化

题面

题目传送门

解法

神仙题

  • 简化一下题面就是选出不相交的 k + 1 k+1 k+1条链,使得边权之和最大。
  • 先写写部分分好了。
  • k = 0 / 1 k=0/1 k=0/1比较简单,求一求直径就好了,具体细节不再赘述(我记得我当初在考场上的时候竟然用两次dfs求直径,然后因为有负数就只有5分……)
  • k = 2 k=2 k=2可能是大分类讨论,表示并不会……考虑 k ≤ 100 k\leq100 k100怎么处理。
  • 可以考虑树形dp。 f [ x ] [ i ] [ 0 ] f[x][i][0] f[x][i][0]表示根为 x x x的子树中选择 i i i条链,且 x x x这个点不在某一条链上; f [ x ] [ i ] [ 1 ] f[x][i][1] f[x][i][1]表示根为 x x x的子树中选择 i i i条链,且 x x x为链的某一个端点; f [ x ] [ i ] [ 2 ] f[x][i][2] f[x][i][2]表示根为 x x x的子树中选择 i i i条链,且 x x x这个点并不作为端点而是在路径上。
  • 转移比较简单,只是在处理 f [ x ] [ i ] [ 2 ] f[x][i][2] f[x][i][2]的时候可能要稍微注意一下,就是两条路径在合并的时候最终是变成1条路径,而不是两条,所以并不能直接相减,需要+1。
  • 时间复杂度: O ( n k ) O(nk) O(nk)
  • 考虑怎么处理 k ≤ n k\leq n kn的情况。可以发现,将 ( i , F ( i ) ) (i,F(i)) (i,F(i))看作一个点的话,那么这 k k k个点构成了一个凸壳(并不知道为什么)。
  • 然后可以二分一个斜率 m i d mid mid,表示选择一条路径需要额外付出的代价为 m i d mid mid,然后再次进行树形dp,不过这一次并不需要记录相关的链的个数。dp数组 f [ x ] [ 0 / 1 / 2 ] f[x][0/1/2] f[x][0/1/2]记录一个最大值 v v v和相应的路径条数 s s s,转移类似于 60 60 60分的dp。
  • 最后在二分的时候看选出的路径条数与 k k k的关系即可。
  • 时间复杂度: O ( n log ⁡ v ) O(n\log v) O(nlogv)

【注意事项】

  • 写dp的时候一定要注意边界条件!!!

代码

#include <bits/stdc++.h>
#define ll long long
using namespace std;
template <typename T> void chkmax(T &x, T y) {x = x > y ? x : y;}
template <typename T> void chkmin(T &x, T y) {x = x < y ? x : y;}
template <typename T> void read(T &x) {
    x = 0; int f = 1; char c = getchar();
    while (!isdigit(c)) {if (c == '-') f = -1; c = getchar();}
    while (isdigit(c)) x = x * 10 + c - '0', c = getchar(); x *= f;
}
const int N = 300010; const ll inf = 1ll << 60;
int n, K, cnt, siz[N], head[N];
struct Edge {int next, num, v;} e[N * 3];
struct Node {ll v, s;} f[N][3];
bool operator < (Node a, Node b) {return a.v == b.v ? a.s < b.s : a.v < b.v;}
Node operator + (Node a, Node b) {return {a.v + b.v, a.s + b.s};}
void add(int x, int y, int v) {
    e[++cnt] = (Edge) {head[x], y, v};
    head[x] = cnt;
}
void dfs(int x, int fa, ll mid) {
    for (int p = head[x]; p; p = e[p].next) {
        int y = e[p].num; ll v = e[p].v;
        if (y == fa) continue; dfs(y, x, mid);
        f[x][2] = max(f[x][2] + f[y][0], f[x][1] + f[y][1] + (Node) {v - mid, 1});
        f[x][1] = max(f[x][0] + f[y][1] + (Node) {v, 0}, f[x][1] + f[y][0]);
        f[x][0] = f[x][0] + f[y][0];
    }
    f[x][0] = max(f[x][0], max(f[x][1] + (Node) {-mid, 1}, f[x][2]));
}
void Init(ll mid) {
    for (int i = 1; i <= n; i++)
        f[i][0] = f[i][1] = {0, 0}, f[i][2] = {-mid, 1};
}
int main() {
    read(n), read(K);
    for (int i = 1; i < n; i++) {
        int x, y, v; read(x), read(y), read(v);
        add(x, y, v), add(y, x, v);
    }
    K++; ll l = -1e12, r = 1e12, ans = 0;
    while (l <= r) {
        ll mid = (l + r) >> 1; Init(mid), dfs(1, 0, mid);
        Node tmp = f[1][0];
        if (tmp.s >= K) ans = mid, l = mid + 1; else r = mid - 1;
    }
    Init(ans), dfs(1, 0, ans); Node tmp = f[1][0];
    cout << tmp.v + 1ll * ans * K << "\n";
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值