bzoj 3836 [Poi2014]Tourism 状压dp+树形dp

题面

题目传送门

解法

状压dp+树形dp好题

  • 图可能形成多个连通块,对于每一个连通块单独处理,因为相互之间不影响答案。
  • 那么考虑对于一个连通块的答案应该怎么计算。
  • 因为整个图满足最长路不超过10,那么就意味着dfs时候建出的搜索树深度不超过10,并且非树边必然为返祖边。
  • 我们不妨假设 0 0 0表示这个点被选择了, 1 1 1表示这个点没有被选择并且它还没有被覆盖, 2 2 2表示这个点没有被选择但是已经被覆盖过。
  • 可以考虑设计这样一个状态: f [ i ] [ S ] f[i][S] f[i][S]表示点 i i i在搜索树上祖先的选择情况( S S S为一个三进制数,当然包括自己)。然后考虑怎么进行转移。
  • 先处理祖先对该点的影响,假设 i i i的父亲为 j j j,到 j j j时的集合为 S ′ S' S。先假设这个点不取,那么只要 S ′ S' S中和 i i i连接的点中有一个为 0 0 0,那么 S S S的第 d e p [ i ] dep[i] dep[i]位显然就为 2 2 2,否则为 1 1 1,也就是说 f [ i ] [ S ] = m i n { f [ j ] [ S ′ ] } f[i][S]=min\{f[j][S']\} f[i][S]=min{f[j][S]}( S S S的取值应该根据 S ′ S' S来定,主要是第 d e p [ i ] dep[i] dep[i]位上的状态)。然后如果这个点被选择了,那么 S ′ S' S中所有与 i i i相连并且为 1 1 1的都可以修改为 2 2 2,即 f [ i ] [ S ] = m i n { f [ j ] [ S ′ ] } + v a l [ i ] f[i][S]=min\{f[j][S']\}+val[i] f[i][S]=min{f[j][S]}+val[i]
  • 然后再考虑如何处理 i i i的子树对它的贡献。假设 j j j i i i的某一个儿子,那么 f [ i ] [ S ] = m i n ( f [ j ] [ S ] , f [ j ] [ S + 2 × 3 d e p [ i ] ] ) f[i][S]=min(f[j][S],f[j][S+2×3^{dep[i]}]) f[i][S]=min(f[j][S],f[j][S+2×3dep[i]]),就是保证子树合法的情况下尽量最小。
  • 现在,时间复杂度为 O ( ( n + m ) 3 10 ) O((n+m)3^{10}) O((n+m)310),应该已经不太好优化了。但是空间复杂度为 O ( n × 3 10 ) O(n×3^{10}) O(n×310),开不下整个 f f f数组。
  • 考虑如何解决这一问题。可以发现,在 d f s dfs dfs的过程中,还在栈中的点必然深度两两不同,那么一条路径上总共最多就只有 10 10 10个点会产生贡献,所以我们并不需要明确记录点的编号是什么,只需要记录深度就可以表示这一个状态了。
  • 所以现在空间复杂度就变成了 O ( 10 × 3 10 ) O(10×3^{10}) O(10×310),可以通过。
  • 至于为什么不会T,我也不太清楚,可能这种做法在常数上有着优势?或者状态不满?

代码

#include <bits/stdc++.h>
#define ll long long
using namespace std;
template <typename T> void chkmax(T &x, T y) {x = x > y ? x : y;}
template <typename T> void chkmin(T &x, T y) {x = x < y ? x : y;}
template <typename T> void read(T &x) {
	x = 0; int f = 1; char c = getchar();
	while (!isdigit(c)) {if (c == '-') f = -1; c = getchar();}
	while (isdigit(c)) x = x * 10 + c - '0', c = getchar(); x *= f;
}
const int N = 25010; const ll inf = 1ll << 60;
int cnt, a[N], d[N], pw[N], val[N], vis[N], head[N]; ll f[10][60000];
struct Edge {int next, num;} e[N * 3];
void add(int x, int y) {e[++cnt] = (Edge) {head[x], y}; head[x] = cnt;}
void dfs(int x) {
	vis[x] = 1; int t = d[x];
	if (t) {
		int len = 0;
		for (int p = head[x]; p; p = e[p].next) {
			int k = e[p].num;
			if (vis[k]) a[++len] = d[k];
		}
		for (int s = 0; s < pw[t + 1]; s++) f[t][s] = inf;
		for (int s = 0; s < pw[t]; s++) {
			int fl = 1, cur = s;
			if (f[t - 1][s] == inf) continue;
			for (int i = 1; i <= len; i++) {
				int tmp = (s / pw[a[i]]) % 3;
				if (!tmp) fl = 2; if (tmp == 1) cur += pw[a[i]];
			}
			chkmin(f[t][s + fl * pw[t]], f[t - 1][s]);
			chkmin(f[t][cur], f[t - 1][s] + val[x]);
		}
	} else f[t][0] = val[x], f[t][1] = 0, f[t][2] = inf;
	for (int p = head[x]; p; p = e[p].next) {
		int k = e[p].num; if (vis[k]) continue;
		d[k] = d[x] + 1, dfs(k);
		for (int s = 0; s < pw[t + 1]; s++)
			f[t][s] = min(f[t + 1][s], f[t + 1][s + 2 * pw[t + 1]]);
	}
}
int main() {
	int n, m; read(n), read(m);
	for (int i = 1; i <= n; i++) read(val[i]);
	for (int i = 1; i <= m; i++) {
		int x, y; read(x), read(y);
		add(x, y), add(y, x);
	}
	pw[0] = 1;
	for (int i = 1; i <= 10; i++) pw[i] = 3ll * pw[i - 1];
	memset(vis, 0, sizeof(vis)); ll ans = 0;
	for (int i = 1; i <= n; i++)
		if (!vis[i]) dfs(i), ans += min(f[0][0], f[0][2]);
	cout << ans << "\n";
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值