题意概括
有 nnn 个糖果,每种都有一个颜色 cic_ici,求对于所有 k∈[1,n]k\in [1,n]k∈[1,n] ,求出 CnkC_n^kCnk 种方案中糖果种类的期望数,对 998244353998244353998244353 取模。
分析
通过期望的定义,设 visivis_ivisi 表示每种颜色有没有被选,颜色总数为 mmm,则期望为 E(∑j=1mvisj)E(\sum\limits_{j=1}^{m}vis_j)E(j=1∑mvisj),由线性期望的性质,E(∑j=1mvisj)=∑j=1mE(visj)E(\sum\limits_{j=1}^{m}vis_j)=\sum\limits_{j=1}^{m}E(vis_j)E(j=1∑m

文章描述了一个问题,如何计算n个不同颜色糖果中,每种颜色被选中的期望数量,对998244353取模。通过离散化颜色总数并利用组合数公式和线性期望的性质,优化了时间复杂度至O(n√n),并提及了预处理阶乘和逆元以提高效率。
最低0.47元/天 解锁文章
389

被折叠的 条评论
为什么被折叠?



