「ABC215G」 Colorful Candies 2

文章描述了一个问题,如何计算n个不同颜色糖果中,每种颜色被选中的期望数量,对998244353取模。通过离散化颜色总数并利用组合数公式和线性期望的性质,优化了时间复杂度至O(n√n),并提及了预处理阶乘和逆元以提高效率。

题意概括

nnn 个糖果,每种都有一个颜色 cic_ici,求对于所有 k∈[1,n]k\in [1,n]k[1,n] ,求出 CnkC_n^kCnk 种方案中糖果种类的期望数, 998244353998244353998244353 取模

分析

通过期望的定义,设 visivis_ivisi 表示每种颜色有没有被选,颜色总数为 mmm,则期望为 E(∑j=1mvisj)E(\sum\limits_{j=1}^{m}vis_j)E(j=1mvisj),由线性期望的性质,E(∑j=1mvisj)=∑j=1mE(visj)E(\sum\limits_{j=1}^{m}vis_j)=\sum\limits_{j=1}^{m}E(vis_j)E(j=1m

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值