线性分类模型之感知机

线性分类模型之感知机

以下是本文的思路:

  1. 思想
  2. 模型
  3. 策略
  4. 算法
  5. 例子
  6. 结语

1.思想:错误驱动

已知线性可分数据: Data = { ( X i , y i ) {(X_{i},y_i)} (Xi,yi)} 其中 (i = 1,2,…,N);N个样本,p个特征。
假设数据线性可分:如图。线性可分数据
设 D = {被错误分类的样本}

2.模型

f ( x ) = S i g n ( w T x ) , x ∈ R p , w ∈ R p , 其 中 S i g n ( a ) = { 1 a ⩾ 0 − 1 a < 0 \boxed{f(x) = Sign(w^Tx) ,x\in R^p,w\in R^p,其中Sign(a) = \begin{cases}1&a\geqslant0\\-1&a<0\end{cases}} f(x)=Sign(wTx),xRp,wRp,Sign(a)={11a0a<0

3.策略:(loss function)

思路一:我们使用被错误分类的点的个数为loss function:
L ( w ) = ∑ i = 1 N I { y i w T < 0 } \boxed{L(w) = \sum\limits_{i=1}^NI\{y_i w^T<0\}} L(w)=i=1NI{yiwT<0}
由于这个loss function 不可导,不方便对它进行优化,所以我们采用思路二。

思路二:我们发现 − ∑ i = 1 N y i w T {-\sum\limits_{i=1}^Ny_iw^T} i=1NyiwT刚好可以作为loss function
L ( w ) = − ∑ x i ∈ D N y i w T {L(w) = -\sum\limits_{x_i\in D}^Ny_iw^T} L(w)=xiDNyiwT ,这个loss function 刚好是可导而且可以完成分类任务。

想想为什么? L ( w ) = − ∑ x i ∈ D N y i w T \boxed{L(w) = -\sum\limits_{x_i\in D}^Ny_iw^T} L(w)=xiDNyiwT表示错误的点到平面的距离和。

4.算法:(SGD–随机梯度下降法)

W ( t + 1 ) ⟵ W ( t ) − λ ∇ ( L ) \boxed{W^{(t+1)} \longleftarrow W^{(t)} - \lambda\nabla (L)} W(t+1)W(t)λ(L)
其中, λ 为 步 长 , ∇ ( L ) 为 梯 度 , ∇ ( L ) = − y i x i 。 {\lambda 为步长,\nabla (L) 为梯度,\nabla (L) = -y_ix_i 。} λ(L)(L)=yixi

5.例子:

例2.1 如图2.2所示的训练数据集,其正实例点是x1=(3,3)T,x2=(4,3)T,负实例点是x3=(1,1)T,试用感知机学习算法的原始形式求感知机模型f(x)=sign(w·x+b)。这里,w=(w(1),w(2))T,x=(x(1),x(2))T。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6.结语:

经过一番努力,我们终于完成了感知机的模型与算法推导,希望大家能够自己多多动手,自己总结,能够掌握感知机模型。

参考内容:
1.白板推导之线性分类模型
2.李航《统计学习方法》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值