题目描述
组合数 C_n^mCnm 表示的是从 nn 个物品中选出 mm 个物品的方案数。举个例子,从 (1,2,3)(1,2,3) 三个物品中选择两个物品可以有 (1,2),(1,3),(2,3)(1,2),(1,3),(2,3) 这三种选择方法。根据组合数的定义,我们可以给出计算组合数 C_n^mCnm 的一般公式:
C_n^m=\frac{n!}{m!(n-m)!}Cnm=m!(n−m)!n!
其中 n!=1\times2\times\cdots\times nn!=1×2×⋯×n;特别地,定义 0!=10!=1。
小葱想知道如果给定 n,mn,m 和 kk,对于所有的 0\leq i\leq n,0\leq j\leq \min \left ( i, m \right )0≤i≤n,0≤j≤min(i,m) 有多少对 (i,j)(i,j) 满足 C_i^jCij 是 kk 的倍数。
输入输出格式
输入格式:
第一行有两个整数 t,kt,k,其中 tt 代表该测试点总共有多少组测试数据,kk 的意义见问题描述。
接下来 tt 行每行两个整数 n,mn,m,其中 n,mn,m 的意义见问题描述。
输出格式:
共 tt 行,每行一个整数代表所有的 0\leq i\leq n,0\leq j\leq \min \left ( i, m \right )0≤i≤n,0≤j≤min(i,m) 中有多少对 (i,j)(i,j) 满足 C_i^jCij 是 kk 的倍数。
输入输出样例
输入样例#1: 复制
1 2
3 3
输出样例#1: 复制
1
输入样例#2: 复制
2 5
4 5
6 7
输出样例#2: 复制
0
7
思路:利用组合数递推公式c(m,n)=c(m-1,n-1)+c(m,n-1),先暴力打表,得到所有的c(i,j),然后用前缀和求解大大缩减时间。
#include<bits/stdc++.h>
#define INF 0x3fffffff
#define ll long long
#define mem(ar,num) memset(ar,num,sizeof(ar))
#define me(ar) memset(ar,0,sizeof(ar))
#define lowbit(x) (x&(-x))
#define IOS ios::sync_with_stdio(false)
#define DEBUG cout<<endl<<"DEBUG"<<endl;
using namespace std;
ll t, k, n, m, c[2001][2001], ans[2010][2010];
void build() {
c[0][0] = 1;
c[1][0] = c[1][1] = 1;
for(int i = 2; i <= 2000; i++) {
c[i][0] = 1;
for(int j = 1; j <= i; j++) {
c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % k;
ans[i][j] = ans[i - 1][j] + ans[i][j - 1] - ans[i - 1][j - 1];//矩阵前缀和
if(c[i][j] % k == 0)
ans[i][j]++;//如果满足结论,计数加一。
}
ans[i][i + 1] = ans[i][i];
}
}
int main() {
cin >> t >> k;
build();
while(t--) {
cin >> n >> m;
if(m > n)
m = n;
cout << ans[n][m] << endl;
}
return 0;
}