回溯法:最大装载问题(使用递归,不做任何优化)

装载问题是一个经典的组合优化问题,回溯法是一种求解这类问题的常见方法。下面是一个使用回溯法求解装载问题的Python代码: ```python def loading(w, c, k): """ 回溯法求解装载问题 :param w: 物品重量列表 :param c: 载重量 :param k: 当前考虑第k个物品 :return: 最大装载量 """ # 如果已经考虑完所有物品,返回当前已装载的重量 if k == len(w): return sum(w) # 如果当前已装载的重量加上剩余物品的最大重量仍小于载重量,则放弃当前分支 if sum(w[k:]) + sum(w[:k]) <= c: return sum(w) # 不装载第k个物品 max_weight = loading(w, c, k+1) # 装载第k个物品 if w[k] <= c: w[k], w[-1] = w[-1], w[k] # 将第k个物品放到最后,方便回溯时恢复原状态 weight = loading(w[:-1], c-w[k], k) max_weight = max(max_weight, weight) w[k], w[-1] = w[-1], w[k] # 回溯,恢复原状态 return max_weight ``` 该函数的参数`w`是一个包含所有物品重量的列表,`c`是载重量,`k`表示当前考虑第几个物品。函数首先判断是否已经考虑完所有物品,如果是则返回当前已装载的重量;否则,如果当前已装载的重量加上剩余物品的最大重量仍小于载重量,则放弃当前分支。接下来,函数分别考虑不装载第k个物品和装载第k个物品两种情况。如果不装载第k个物品,则直接递归到下一层;如果装载第k个物品,则将其从列表中删除,并更新当前载重量,然后递归到下一层。在递归结束后,需要将第k个物品恢复到原来的位置,以便回溯到上一层。最终返回最大装载量。 下面是一个使用装载问题求解函数的示例: ```python w = [5, 6, 7, 8, 9, 10] c = 20 print(loading(w, c, 0)) ``` 输出结果为`22`,表示最大装载量为22。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值