当前AI对人类经济的影响指数

       未来几年,AI系统将对人们的工作方式产生重大影响。因此,这篇文章,旨在了解AI对劳动力市场和经济的长期影响。

       本文基于 Claude.ai 上数百万次匿名对话提供了首创的数据和分析,揭示了迄今为止最清晰的AI如何融入现代经济中的现实的图景。

我们还开放了用于此分析的数据集,以便研究人员可以在此基础上进一步研究和扩展我们的研究成果。需要从多个角度考虑去制定政策应对措施,以应对劳动力市场即将到来的转型及其对就业和生产力的影响。为此,我们还邀请经济学家、政策专家和其他研究人员为该指数提供意见。

       本文主要发现如下:

       目前,AI的使用主要集中在软件开发和技术写作任务中。超过三分之一的职业(约 36%)至少在四分之一的相关任务中使用AI,而约 4% 的职业在四分之三的相关任务中使用AI;

        AI的使用更倾向于增强(57%),即AI与人类协作而增强人类的能力,而自动化(43%)则是指AI直接执行任务;

        AI在计算机程序员和数据科学家等中高薪职业中更为普遍,但在最低薪和最高薪职位中,AI的使用率较低。这可能既反映了当前AI能力的局限性,也反映了使用该技术的实际障碍。

        初步调查结果的更多详细信息请参见下文。

        AI在经济中的应用范围和方式,这些数据来自 Claude.ai 的真实使用数据。这些数字指的是与 Claude 对话中,与个别任务、职业和类别相关的百分比。

绘制整个劳动力市场的AI使用情况

      本文建立在一系列关于技术对劳动力市场影响的研究基础之上,从工业革命时期的珍妮纺纱机到当今的汽车制造机器人。我们关注的是AI的持续影响。我们不会调查人们对AI的使用情况,也不会试图预测未来;相反,我们有关于AI实际使用情况的直接数据。

职业任务分析

      本文的研究始于经济学文献中的一个重要见解:有时关注职业任务而不是职业本身是有意义的。工作通常具有某些共同的任务和技能:例如,视觉模式识别是设计师、摄影师、安检员和放射科医生执行的工作任务。

      某些任务比其他任务更适合自动化或通过新技术进行增强。因此,我们预计AI将有选择地应用于不同职业的不同任务,并且分析任务(以及整个工作)将使我们更全面地了解AI如何融入经济。   

       对大约一百万次与 Claude 对话(具体而言是 Claude.ai 上的免费和专业对话)的数据集进行分析,并使用它按职业任务对对话进行整理。

       根据美国劳工部制定的分类来选择任务,该部门维护着一个包含约 20,000 个特定工作相关任务的数据库,称为职业信息网络 (O*NET)。将每个对话与最能代表 AI 在对话中的角色的 O*NET 任务相匹配(下图总结了这个过程)。然后,我们按照 O*NET 方案将任务分组到它们最能代表的职业中,并将职业分为一小部分总体。

       类别:教育和图书馆、商业和金融等。

     将与 Claude 的对话(严格保密;左上)转化为职业任务(中上)和从 O*NET 得出的职业/职业类别(右上)的过程。然后可以将它们输入到各种分析中(底行;下面将详细讨论)。

结果

       按工作类型划分的 AI 使用情况。在我们的数据集中,采用 AI 最多的工作任务和职业是“计算机和数学”类别,其中很大一部分涵盖了软件工程角色。发送给 Claude 的查询中有 37.2% 属于此类别,涵盖软件修改、代码调试和网络故障排除等任务。

      第二大类别是“艺术、设计、体育、娱乐和媒体”(占查询的 10.3%),主要反映人们使用 Claude 进行各种写作和编辑。毫不奇怪,涉及大量体力劳动的职业,例如“农业、渔业和林业”类别(占查询的 0.1%),占比最低。

       我们还将数据中的比率与各职业在劳动力市场中的总体出现率进行了比较。下图显示了比较结果。

            对于每种工作类型,与 Claude 相关的对话的百分比以橙色显示,而美国经济中从事该工作类型的工人百分比(来自美国劳工部的 O*NET 类别)则以灰色显示。

       职业中 AI 使用的深度。我们的分析发现,很少有职业在大多数相关任务中使用 AI:只有大约 4% 的工作至少在 75% 的任务中使用了 AI。然而,更适度的 AI 使用更为普遍:大约 36% 的工作至少在 25% 的任务中使用了 AI。

       正如我们所预测的那样,这组数据中并没有证据表明工作已经完全自动化:相反,人工智能渗透到了经济中的许多任务中,对某些任务组的影响比其他任务组更大。

       AI的使用和薪资。O*NET 数据库提供了所列每个职业的美国平均薪资。我们将此信息添加到我们的分析中,以便我们对相应职业的平均薪资和其职业任务中的AI使用水平进行比较。

       有趣的是,低薪和高薪工作使用AI的比例都很低(这些工作通常需要大量手动操作,例如洗发工和产科医生)。在我们的数据中,只有工资处于中高水平的特定职业,如计算机程序员和文案撰稿人,才是AI使用率最高的职业。

           年薪(x 轴)与 Claude 交谈中涉及该职业的百分比(y 轴)。图中突出显示了一些代表性职业。

      自动化与增强。我们还更详细地研究了工作任务的执行方式,具体来说,哪些任务涉及“自动化”(其中 AI 直接执行诸如格式化文档之类的任务)与“增强”(其中 AI 与用户协作执行任务)。

      总体而言,我们发现AI略微倾向于增强,其中 57% 的任务得到了增强,43% 的任务实现了自动化。也就是说,在超过一半的案例中,AI并没有被用来取代人们完成任务,而是与他们一起工作,参与验证(例如,仔细检查用户的工作)、学习(例如,帮助用户获得新知识和技能)和任务迭代(例如,帮助用户集思广益或以其他方式执行重复的生成性任务)等任务。

     与 Claude 的对话中涉及增强与自动化的百分比,以及增强与自动化中任务子类型的细分。我们论文中对子类型的定义如下。Directive: 以最少的交互完成任务委派; Feedback Loop: 由环境反馈指导的完成任务;Task Iteration:协作细化改善过程;Learning: 知识获取和理解;Validation: 工作验证和改进。

注意事项

      我们的研究让我们得以独特地了解AI如何改变劳动力市场。但与所有研究一样,它也存在重大局限性。其中包括:

      1.我们无法确定某人使用 Claude 完成任务是否是为了工作。某人向 Claude 寻求写作或编辑建议可能是出于工作目的,也可能是为了他们作为业余爱好而写的小说。

      2.与此相关的是,我们不知道用户是如何使用 Claude 的回复的。例如,他们是否复制粘贴代码片段?他们是否对回复进行了事实核查,还是不加批判地接受了回复?在我们的数据中,有些看似自动化的内容实际上可能是增强:例如,用户可能会要求 Claude 为他们写一份完整的备忘录(这看起来像是自动化),但之后自己对其进行编辑(这应该是增强)。

      3.我们还仅分析来自 Claude.ai 免费版和专业版计划的数据,而不分析 API、团队版或企业版用户的数据。虽然 Claude.ai 数据包含一些非工作对话,但我们使用语言模型过滤这些数据,使其仅包含与职业任务相关的对话,这有助于缓解这种担忧。

      4.大量不同的任务意味着 可能对某些对话进行了错误分类;

      5.Claude 无法生成图像(除非通过代码间接生成),因此一些创造性的用途不会在数据中被引用;

      6.鉴于 Claude 被宣传为最先进的编码模型,我们可能认为编码作为用例会占比过高。因此,我们并不认为我们的数据集中的用例是一般 AI 用例的代表性样本。

结论和未来研究

      AI的应用正在迅速扩大,模型也变得越来越强大。劳动力市场的状况可能在相对较短的时间内发生很大变化。因此,我们应该随着时间的推移重复上述许多分析,以帮助追踪可能发生的社会和经济变化。

      这些纵向分析可以为我们提供关于AI和就业市场的新见解。例如,我们将能够监测职业中AI使用深度的变化。如果AI仍然只用于某些任务,并且只有少数工作将AI用于绝大多数任务,那么未来可能是大多数现有工作不断发展而不是消失的时代。我们还可以监测自动化与增强的比例,发现哪些领域自动化越来越普遍。

     本文的研究提供了有关AI使用情况的数据,但并未提供政策建议。关于如何应对AI对劳动力市场的影响的问题的答案不能直接来自孤立的研究;相反,答案将来自广泛视角的证据、价值观和经验的结合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值