题面
给出N(<=100 000)点M(<=200 000)边的无向无权图,存在环和重边。问从1到其他每个顶点,有多少条不同的最短路
分析
单源最短路有SPFA和dijkstra两种,前者代表bfs类,后者代表dfs类。这个题问有多少种不同的最短路(长度相同的不同路),边又无权(节点个数即路长度),所以感觉起来bfs类更优。
那么最短路的种数就是在这个节点第一次出现那一层,走到它的路径条数(不会更短,因为是最短路;不会更长,因为不是最短)。可以用dis数组来表示到每个节点的距离(说bfs深度也可),如果是第一次遇到则更新dis,同时路径数+1;非第一次遇到,用加法原理:路径数增加了到这里来的那个节点本身的路径数
。
每个节点只会加入一次(不会多次,因为多次的加入其深度不一定相同,不满足最短性质)
复杂度约O(N+M),每个顶点会入一次队列,每个边会被遍历到两次
代码
#include "cstdlib"
#include <iostream>
#include <stdio.h>
#include <string.h>
#include<algorithm>
#include <string>
#include<vector>
#include<queue>
using namespace std;
vector<int> v[1000002];
int dis[1000005], num[1000005],vis[1000005];
queue<int>q;
int main()
{
ios::sync_with_stdio(false);
int n, m;
int from, to,size,temp;
cin >> n >> m;
memset(dis, 0x3f3f3f3f, 1000005 * sizeof(int));
for (int i = 0; i < m; i++)
{
cin >> from >> to;
v[from].push_back(to);
v[to].push_back(from);
}
dis[1]=0;
num[1] = 1;
vis[1] = 1;
q.push(1);
while (!q.empty())
{
from = q.front();
size = v[from].size();
q.pop();
for (int i = 0; i < size; i++)
{
temp = v[from][i];
if (!vis[temp]) { dis[temp] = dis[from] + 1;q.push(temp);vis[temp] = 1; }
if (dis[temp] == dis[from] + 1) { num[temp] = (num[temp] + num[from])%100003; }
}
}
for (int i = 1; i <= n; i++)
{
cout << num[i] << endl;
}
return 0;
}