GitHub上最火的22个Android开源项目源码(最少的一个也超过10k star)

chat图表

https://github.com/PhilJay/MPAndroidChart
在这里插入图片描述

最全android工具类库 29.6k start

https://github.com/Blankj/AndroidUtilCode

Android智能下拉刷新框架-SmartRefreshLayout 20多种效果

https://github.com/scwang90/SmartRefreshLayout N种下拉刷新效果

强大而灵活的RecyclerView Adapter

https://github.com/CymChad/BaseRecyclerViewAdapterHelper

Signal - 隐私通信工具

https://github.com/signalapp/Signal-Android
在这里插入图片描述

图片显示控件,可手动缩放

https://github.com/Baseflow/PhotoView
在这里插入图片描述

Telegram

https://github.com/DrKLO/Telegram

基于IJKPlayer(兼容系统MediaPlayer与EXOPlayer2),实现了多功能的视频播放器

https://github.com/CarGuo/GSYVideoPlayer
在这里插入图片描述

腾讯热修复方案tinker

https://github.com/Tencent/tinker
废物

NewPipe 可看油管视频

https://github.com/TeamNewPipe/NewPipe
在这里插入图片描述

圆形imageView

https://github.com/hdodenhof/CircleImageView

各种跳转动画

https://github.com/lgvalle/Material-Animations
在这里插入图片描述在这里插入图片描述

android路由框架

https://github.com/alibaba/ARouter

QMUI Android 的设计目的是用于辅助快速搭建一个具备基本设计还原效果的 Android 项目

https://github.com/Tencent/QMUI_Android
介绍连接:https://qmuiteam.com/android/documents

时间选择器

https://github.com/Bigkoo/Android-PickerView
在这里插入图片描述在这里插入图片描述在这里插入图片描述

鲁班图片压缩工具,现在应该不需要客户端压缩图片了

https://github.com/Curzibn/Luban

item抽屉

https://github.com/daimajia/AndroidSwipeLayout
在这里插入图片描述 在这里插入图片描述

图片选择器

https://github.com/zhihu/Matisse

在这里插入图片描述

VirtualXposed

VirtualXposed 是基于VirtualApp 和 epic 在非ROOT环境下运行Xposed模块的实现(支持5.0~10.0)。
https://github.com/android-hacker/VirtualXposed/blob/vxp/CHINESE.md

android 各种动画

https://github.com/daimajia/AndroidViewAnimations
在这里插入图片描述

号称今日头条的屏幕适配方案

https://github.com/JessYanCoding/AndroidAutoSize

各种轮播banner

https://github.com/youth5201314/banner
在这里插入图片描述在这里插入图片描述

图片剪裁工具

https://github.com/Yalantis/uCrop
在这里插入图片描述

### 回答1: 在Github上,有许多受欢迎的深度学习开源项目。以下是其中一些备受欢迎的深度学习开源项目: 1. TensorFlow:由Google开发的机器学习库,广泛用于深度学习任务。 2. PyTorch:由Facebook开发的深度学习框架,提供动态计算图和丰富的功能。 3. Keras:一个高级神经网络API,可以运行在多个深度学习框架上,如TensorFlow和Theano。 4. Caffe:一个高效的深度学习框架,以速度和模型表达能力著称。 5. MXNet:一个高度可扩展的深度学习框架,支持分布式训练和多种编程语言。 6. Theano:一个基于Python的开源库,用于定义、优化和评估数学表达式,特别适用于深度学习。 7. scikit-learn:一个用于机器学习和数据挖掘的Python库,包含了许多经典的机器学习算法。 8. Darknet:一个轻量级的深度学习框架,特别适用于物体检测和图像分类任务。 9. Caffe2:Facebook开发的深度学习框架,具有高效的分布式训练能力。 10. Torch:一个科学计算框架,提供了丰富的工具和库,适用于深度学习任务。 这只是其中一小部分受欢迎的深度学习开源项目Github上还有许多其他项目,涵盖了各种深度学习任务和应用领域,供开发者们使用和贡献。 ### 回答2: GitHub上最受欢迎的57个深度学习开源项目是基于其Stars数和社区贡献度的排名,以下是其中一些项目的简介: 1. TensorFlow:由Google开发的深度学习框架,功能强大且广泛应用。 2. PyTorch:Facebook开发的深度学习框架,被广泛用于研究和开发。 3. Keras:用户友好的深度学习库,可以在TensorFlow、Theano等后端运行。 4. Caffe:质量高且快速的深度学习框架,适用于计算机视觉任务。 5. Theano:用于定义、优化和评估数学表达式的Python库,支持高效的机器学习计算。 6. Torch:基于LUA的科学计算框架,广泛用于机器学习。 7. MXNet:适用于分布式、高效的深度学习框架。 8. Fast.ai:构建在PyTorch之上的高级API,使深度学习更易于使用。 9. TensorFlow.js:用于在浏览器上进行机器学习的库。 10. Dlib:用于图像处理和机器学习任务的C++库。 11. DeepSpeech:Mozilla构建的自动语音识别框架。 12. OpenCV:图像处理和计算机视觉的开源库,具有深度学习支持。 13. GANs:生成对抗网络的PyTorch实现,用于生成逼真的图像。 14. TensorFlow Object Detection API:用于目标检测的TensorFlow API。 15. MLBox:一个自动化机器学习工具,用于数据预处理、特征选择、模型选择等。 16. NLP:使用自然语言处理技术的Python库。 17. Autokeras:自动化机器学习库,用于快速构建和部署模型。 18. OpenAI Gym:用于开发和比较强化学习算法的工具包。 19. DeepFace:FaceNet网络的Keras实现,用于人脸识别。 20. StyleTransfer:用于图像风格转换的PyTorch实现。 这只是其中一些受欢迎的深度学习项目,GitHub上还有许多其他优秀的项目,每个项目都具有不同的特点和应用领域。无论您是初学者还是专业人士,都可以在GitHub上找到适合您需求的项目。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值