最少钱币数问题也可以看作多重背包问题。
此问题递推公式(也可以叫做动态转移方程):(注:money[i]表示可以使用的纸币的面额组成的数组,dp[m]表示要凑m元至少需要多少张纸币。)
dp[m] = min( dp[ m-money[i] ]+1 , dp[m] )
我们先了解一下DP(Dynamic Programing)的基本原理:首先,找到某个状态的最优解,然后在它的帮助下,找到下一个状态的最优解。不明白这个概念没关系,我们以下面的例子为例来分析一下——如果我们有4种面值分别为1元,3元,5元,7元的纸币,那么至少需要几张纸币就能凑出8元?
在分析这个问题之前先来思考一个问题,至少用多少张纸币能凑够m(表示money)元(m<8)呢?为什么要这么问呢? 动态规划的思想:(1)当我们遇到一个大问题时,总是习惯把问题的规模变小,这样便于分析讨论。 (2)这个规模变小后的问题和原来的问题是同质的,除了规模变小,其它的都是一样的, 本质上它还是同一个问题(规模变小后的问题其实是原问题的子问题)。
让我们从规模最小的m开始。当m=0时,即我们需要多少个币来凑够0元呢? 由于1,3,5,7都大于0,即没有比0小的币值,因此凑够0元我们最少需要0个币。 (em…Interesting,这个分析很傻是不是?别着急,这个思路有利于我们理清动态规划究竟在做些什么。) 为了方便我们用dp[m]=c来表示凑够m元最少需要c个硬币。于是我们就得到了dp[0]=0, 表示凑够0元最小需要0个硬币。当m=1时,只有面值为1元的硬币可用, 因此我们拿起一个面值为1的硬币,接下来只需要凑够0元即可,而这个是已经知道的dp[0]=0。所以,dp[1]=dp[1-1]+1=dp[0]+1=0+1=1
。当m=2时, 仍然只有面值为1的硬币可用,于是我拿起一个面值为1的硬币, 接下来我只需要再凑够2-1=1元即可(记得要用最小的硬币数量),而这个答案也已经知道了。 所以dp[2]=dp[2-1]+1=dp[1]+1=1+1=2
。分析到这里,聪明的你可能已经看出端倪,没看出来没关系,接下来让我们看看m=3时的情况。当m=3时我们能用的硬币就有两种了:1元的和3元的( 5元的仍然没用,因为你需要凑的数目是3元,5元面值太大了)。 既然能用的硬币有两种,我就有两种方案。如果我拿了一个1元的硬币,我的目标就变为了: 凑够3-1=2元需要的最少硬币数量。即dp[3]=dp[3-1]+1=dp[2]+1=2+1=3
。 这个方案说的是,我拿3个1元的硬币;第二种方案是我拿起一个3元的硬币, 我的目标就变成:凑够3-3=0元需要的最少张纸币。即dp[3]=dp[3-3]+1=dp[0]+1=0+1=1. 这个方案说的是,我拿1个3元的硬币。好了,这两种方案哪种更优呢? 记得我们的问题是要用最少的硬币数量来凑够3元。所以, 选择dp[3]=1,怎么来的呢?具体是这样得到的:dp[3]=min(dp[3-1]+1, dp[3-3]+1)
。
简洁的说,对目标金额m,循环整个money数组,每一张货币会有两种结果,第一种货币面额很大,超过m&