正在爆发的智能体,能否成为大模型落地医疗的新动力?

人工智能产业的蓬勃发展,带来了人机交互模式的革新。自2022年11月OpenAI发布ChatGPT以来,大语言模型已经深刻影响了我们的工作和生活。作为未来大模型最主流的使用方式,智能体这一概念备受业界关注。

智能体(AI Agent),作为一种能够自主行动、感知环境、做出决策并与环境交互的计算机系统或实体,通常依赖大型语言模型作为其核心决策和处理单元,具备独立思考、调用工具去逐步完成给定目标的能力。

在医疗领域,智能体是否能够在结合大模型能力的基础上,满足医疗用户复杂多变的需求,进而在医疗诊断、科研创新、医学教育等多个关键领域中实现深度应用与融合?同时,专业智能体能否成为推动大模型在医疗领域成功落地的关键?

01 攒经验、能协同,智能体发展潜力大

基于大模型的智能体,其设计目标是实现对环境的有效互动,通过感知模块收集环境信息,通过行动模块来改变环境状态,整合了感知、决策、行动等多个环节,因而智能体在自主能力、决策能力、协作交互等方面展现出优势,弥补了大模型的不足,是大模型的“手脚”,更被视为AI技术与物理世界融合的桥梁。

当前,百度、智谱、火山引擎等企业纷纷推出了自家的智能体平台,以推动AI技术的广泛应用。火山引擎医药大健康行业解决方案总监王喆在一次公开演讲中透露,智能体在医疗行业拥有广阔的应用前景,目前山火引擎企业级智能体应用创新平台已经正式上线,并推出AI医生分身、科研小助手、AI咨询等创新产品。

凭借高效的学习能力,智能体拥有可能在某些特定医疗任务上超越人类专家的巨大潜力。

近日,清华团队开发了一款名为“Agent Hospital”的AI医院小镇,这个模拟医院完全由AI驱动,包括医生、护士和患者在内的所有角色都是通过大模型实现的智能体。它们能够自主交互,并模拟整个医疗过程,包括分诊、挂号、咨询、检查、诊断、治疗和随访等环节。

研究人员开发了一种名为MedAgent-Zero的系统,设计了14名医生和4名护士的智能体,这些医护角色能够从成功和失败的病例中不断学习、自我进化。AI医生在几天内就能完成对大约1万名患者的治疗,而人类医生需要2年时间才能完成等量工作。这虽然只是在模拟环境中与患者交互,通过不断的自主学习和进化,智能体能够在极短的时间内准确、高效地处理大量病例,这无疑为未来的AI医疗领域带来了无限的想象力与可能性。

四川大学华西第二医院党委书记黄勇曾对媒体表示,智能体在医生、患者以及医院管理三个层面均展现出了独特且显著的功能与价值。

面向医生的智能体,通过协助医生管理事务、按照优先级别提醒执行,能够极大减轻医生的工作压力,让他们更专注于患者的诊断和治疗。面向患者的智能体,则如同一位贴心的就医助理,为患者提供从院前咨询到院内检查预约的一站式服务。面向管理的智能体,能够为医院管理者提供精细化运营管理的手段和建议,通过收集和分析医院运营数据,智能体能够发现潜在问题并提出解决方案,帮助医院实现更加高效和精准的管理。

在健康管理领域,智能体的作用更加深入,如结合智能手表等设备实现实时监测和预警,为用户提供个性化的合理建议。

面对医疗领域中的复杂任务时,智能体往往通过相互协作,高效、准确地执行各项任务。

前文中,清华团队开发的模拟医院在训练数据集上存在局限性,主要基于第八版《传染病》中8种呼吸系统疾病的数据。这种数据集的单一性使得AI医生在应用场景上被局限在呼吸系统疾病领域,从而大大简化了真实的医疗过程。

在任务执行时,单个智能体依据特定角色的专业能力,可以独立完成某项任务。在实际的医疗场景中,当面临超出单个智能体能力范围的复杂任务时,它们能够迅速启动协作机制,召唤其他智能体加入,极大地增强了智能体系统应对复杂医疗场景的能力。

不同智能体之间的信息共享和协同决策,能够构建一个多智能体协作的生态系统,帮助医疗工作者做出更加明智的决策,多智能体协同工作也是未来智慧医疗发展的重要趋势。

02 专业智能体,实现垂类大模型能力?

在医疗领域,大模型与人类的交互通过精准的提示词(Prompt)得以实现,用户输入的提示词清晰度与明确性,对于大模型理解和响应的精准度至关重要。当前的大模型已经具备一定的智力水平,且知识储备丰富,但与特定领域结合并应用才能发挥更大的价值,这也为各个领域垂类大模型的发展提供了生存空间。

那么,依据特定场景与经验、规则和数据生成的智能体,是否有可能展现出比垂类大模型更为出色的能力?

以火山引擎的“AI医生分身”智能体为例,这款智能体以医疗垂类大模型为基石,获取医生的个人语料、声纹等资料,并对信息进行深度存储和加工。在持续实践中,通过自我反思和学习,逐步构建起对用户偏好、知识库和对话状态的长期记忆,实现患者的基本互动。

从架构上看,该智能体以通用大模型为底座,医疗垂类大模型作为核心中间层,确保其在医疗领域的专业性和精准性。智能体基于医疗垂类大模型,完成各类医患之间的互动任务。

可以看出,智能体的发展无疑受到大模型能力的深远影响。

今年6月,OpenAI宣布限制部分国家和地区的API使用,中国目前不在其支持列表内,这将导致中国开发者可能无法通过直接调用OpenAI API的方式来使用GPT系列的相关模型能力。一直以来,国内多家大模型厂商宣称已经开发出与OpenAI对标的大模型,但资深业内观察人士告诉亿欧大健康,理论上,随着通用大模型能力的不断增强,其在某些特定领域中的能力可能会超越现有的垂类大模型,这无疑给垂类大模型的发展带来了一定的风险和挑战。

此外,医疗垂类大模型面临的主要挑战是历史数据的稀缺以及原始数据的不准确,需投入大量精力去剔除数据的“包装”,从而确保数据的一致性和准确性。更值得注意的是,大模型在处理信息时还面临着信息时效性的问题,即如何平衡历史数据和当前数据中的矛盾,这也是大模型在数据训练过程中需要解决的难题之一。

同时,大模型的训练是一个高度工程化的问题,从参数量、训练数据到算力资源,再到部署运营、模型算法及安全可信等方面,每一个环节都需要精细化的管理和优化。

可以说,优质的大模型不仅是智能体实现垂类大模型能力的基石,更是决定智能体在特定领域中表现的关键因素。然而,智能体之所以能够展现出如此强大的市场竞争力,并不仅仅依赖于大模型的先进性。

实际上,智能体作为大模型在特定领域的应用,其独特的低代码构建和低成本研发等特点,使得智能体能够快速响应市场需求,灵活调整产品策略,为企业带来更高的效益。

03 商业落地与前景展望

智能体带来了新的应用生态、流量格局和商业模式。比尔盖茨近期在其个人网站撰文《AI is about to completely change how you use computers》中,阐述了智能体将在未来几年如何颠覆传统软件行业,并声称智能体将是未来AI最大的赛道。在今年的世界人工智能大会中,李彦宏也表示最看好智能体的发展。智能体能够根据具体场景和需求进行深度定制和优化,成为机构数字化转型的重要工具。

当下,大模型的落地实施正遭遇多重挑战。为确保基于大模型构建的智能体能够顺利进入市场,并创造广泛的商业价值,这些智能体必须展现出卓越的专业水准。

这不仅要求开发者或专业人士在构建智能体时,需融入自身深厚的医疗知识储备,可以说,“师傅”专业水平的高低将直接影响智能体的质量。

此外,工具的有效利用是将大模型在企业内部落地实施的关键, 智能体通过无缝对接医疗机构业务系统的接口和数据,自主完成各类业务目标,从而为企业创造显著的实际效益。作为智能体的核心模块,这些工具能够帮助获取并处理文本、语音、图片及文件等多模态信息,进一步丰富大模型处理复杂数据的能力。

尽管大语言模型的崛起确实带来了前所未有的机遇,但同时也面临着隐私保护、数据安全等不容忽视的挑战。随着智能体获取的信息越来越多,其能力愈发强大。因此,政府及相关部门需要在大语言模型原生应用发展初期就应给予足够的重视,制定规范、强化监管,确保大语言模型及其应用能够稳健、安全地发展。

“未来已来,只是尚未流行。” 随着通用大模型在数量上趋于稳定,市场正悄然迎来大模型在垂直行业中技术与应用的激烈角逐。在这场变革的浪潮中,智能体在智慧医疗领域的应用潜力正逐步释放与拓展,推动着传统医疗模式的创新与升级。未来,智能体将如何继续深化其在医疗领域的应用,可以拭目以待。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值