Longest Palindromic Substring


Manacher算法解释:http://tarokuriyama.com/projects/palindrome2.php

class Solution {
public:
    string longestPalindrome(string s) {
        //O(N^2)超时
		if(s.empty())
		{
		    return "";
		}
		int start=0,end=-1;
        char *table = new char[s.size()*s.size()];
		memset(table,-1,s.size()*s.size()*sizeof(char));
		for(int i=0;i<s.size();i++)
		{
			for(int j=i;j<s.size();j++)
			{
				if(isPalin(s,i,j,table) && (j-i+1)>(end-start+1))
				{
					start=i;
					end=j;
				}
			}
		}
		return s.substr(start,end-start+1);
    }
	char isPalin(const string &s,int i,int j,char *table)
	{
		if(table[i*s.size()+j]!=-1)
		{
			return table[i*s.size()+j];
		}
		if(i>j){
			table[i*s.size()+j]=0;
		}
		else if(i==j){
			table[i*s.size()+j]=1;
		}else if(i+1==j){
			table[i*s.size()+j]=(s[i]==s[j]?1:0);
		}else{
			table[i*s.size()+j]=isPalin(s,i+1,j-1,table) && (s[i]==s[j]);
		}
		return table[i*s.size()+j];
	}
};
class Solution {
//从网上找的一份Manacher算法的实现,稍微修改了一下
public:
// Transform S into T.
// For example, S = "abba", T = "^#a#b#b#a#$".
// ^ and $ signs are sentinels appended to each end to avoid bounds checking
string preProcess(string s) {
	int n = s.length();
	if (n == 0) return "^$";
	string ret = "^";
	for (int i = 0; i < n; i++) ret += "#" + s.substr(i, 1);
	ret += "#$";
	return ret;
}
string longestPalindrome(string s) {
	string T = preProcess(s);
	const int n = T.length();
	// 以 T[i] 为中心,向左/右扩张的长度,不包含 T[i] 自己,
	// 因此 P[i] 是源字符串中回文串的长度
	int P[n];
	int max_len = 0;
	int center_index = 0;
	int C = 0, R = 0;
	for (int i = 1; i < n - 1; i++) {
		int i_mirror = 2 * C - i; // (i_mirror+i)/2==c
		P[i] = (R > i) ? min(R - i, P[i_mirror]) : 0;
		// Attempt to expand palindrome centered at i
		while (T[i + 1 + P[i]] == T[i - 1 - P[i]])
			P[i]++;
		// If palindrome centered at i expand past R,
		// adjust center based on expanded palindrome.
		if (i + P[i] > R) {
			C = i;
			R = i + P[i];
		}
		//find the max
		if (P[i] > max_len) {
			max_len = P[i];
			center_index = i;
		}
	}
	return s.substr((center_index - 1 - max_len) / 2, max_len);
	}
};




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值