医学图像特点及其相关技术研究综述
摘要
本综述聚焦医学图像的特点,系统阐述其灰度性、疾病表现多样性与时空关系、多模态性、模糊性及数据异质性等特性,并深入探讨基于这些特点衍生出的医学图像存储与通信标准,以及基于内容的医学图像检索关键技术与应用。通过对相关研究成果的梳理与分析,揭示医学图像研究领域的现状、挑战与发展趋势,为后续医学图像研究与应用提供理论参考与方向指引。
关键词
医学图像;图像特点;存储标准;内容检索;多模态
一、引言
医学图像作为现代医学诊断与研究的重要工具,承载着人体组织器官的结构与功能信息 。与一般图像相比,医学图像具有独特的性质,这些特性决定了医学图像处理、存储与检索等技术的特殊性与复杂性。深入研究医学图像的特点,对于提高医学诊断准确性、推动医学影像信息学的发展具有重要意义。本文将对医学图像的特点及相关技术进行全面综述。
二、医学图像的特点
(一)灰度性
医学图像大多为灰度图像,相较于普通图像,缺乏丰富的颜色信息,而颜色信息在普通图像检索中是重要特征。同时,医学图像灰度级高,窗宽、窗位的调整会显著改变图像视觉效果,影响图像内容表达,这使得基于灰度特征的医学图像分析与检索具有独特的挑战与要求 。
(二)疾病表现多样性与时空关系
医学影像所表达的组织属性随空间和时间变化,反映身体内部结构与功能的动态演变。疾病影像表现与病变位置、周边组织的空间关系以及病程发展的时间关系紧密相连。同一种疾病在不同时期、不同位置有不同影像表现,不同疾病也可能出现类似影像,仅考虑疾病性质进行检索难以满足临床需求 。
(三)多模态性
由于现代医学影像设备成像原理多样,医学图像具有多模态性,主要分为解剖图像和功能图像。解剖图像分辨率高,能清晰呈现脏器解剖形态;功能图像虽分辨率较低,但可提供脏器功能代谢信息,二者在临床应用中相互补充。每种模态下还可因成像参数和原理差异产生不同表现的图像,多种模态图像共同为疾病诊断提供全面信息 。
(四)模糊性
医学图像本质上存在不均匀性和模糊性。灰度方面,同一组织灰度值可能大幅波动,成像过程中的噪声信号、人体活动等因素会导致图像模糊。此外,局部体效应使得图像中物体边缘、区域关系难以精确描述,病变组织与周边组织边界界定困难,同时疾病引发的异常结构也给数学建模带来不确定性 。
(五)数据异质性
不同成像设备产生的医学图像在存储、尺寸和显示等方面存在差异,这源于设备制造商内部数据格式的不同,导致医学图像在外观、方向、大小、空间分辨率和灰度分辨率上各不相同,需要采用归一化方法处理特征数据 。
三、医学图像存储与通信标准
在医学影像信息学发展过程中,为解决医疗设备生产厂商造成的医学图像存储格式和传输方式混乱问题,美国放射学会(ACR)和全美电子厂商联合会(NEMA)联合推出了医学数字图像存储与通信标准(DICOM) 。该标准涵盖医学数字图像采集、归档、通信、显示及查询等信息交换协议,以开放互联架构和面向对象方法定义信息对象集、服务类与命令集等,极大地推动了远程放射学系统、图像管理与通信系统的发展,实现了医学影像信息交换的标准化与规范化 。DICOM文件由文件头和数据集合组成,文件头包含标识数据集合信息,数据集合存储医学图像及相关信息,这些信息可作为医学图像数据库索引关键字 。
四、基于内容的医学图像检索技术
(一)研究热点
1. 全局特征与相似性度量:早期研究聚焦于选择合适的全局特征描述图像内容,并探索有效的相似性度量方法进行图像匹配 。
2. 基于区域的图像检索:通过图像分割提取图像中的物体,利用局部特征描述每个区域,综合区域特征得到图像特征描述 。
3. 相关反馈技术:借助相关反馈思想,依据用户需求调整检索特征和相似性度量方法,缩小底层特征与高层语义之间的差距 。
4. 语义信息融合:研究从多种渠道获取图像语义信息,将图像底层特征与文本关键字结合,提高检索准确率 。
(二)在医学领域的应用
医学图像内容复杂丰富,仅依靠表层视觉特征检索难以达到理想效果。目前研究人员尝试将医学图像精确易得的信息与表层视觉特征相结合,进行多层次检索。底层特征和语义特征相结合的医学图像描述方法逐渐成为研究方向,综合图像视觉内容和相关文本信息的查询是未来医学图像数据库广泛应用的必然趋势 。
五、结论与展望
医学图像的灰度性、疾病表现多样性与时空关系、多模态性、模糊性及数据异质性等特点,决定了医学图像研究与应用的独特性和复杂性。DICOM标准的出现解决了医学图像存储与通信的标准化问题,基于内容的医学图像检索技术在不断发展,但仍面临诸多挑战,如“语义鸿沟”问题尚未完全解决。未来,医学图像研究需进一步探索更有效的特征提取与融合方法,结合人工智能、深度学习等技术,实现更精准的医学图像分析与检索;同时,加强多模态图像信息的整合与利用,推动医学影像信息学向智能化、精准化方向发展。
以上论文综述围绕医学图像特点及相关技术展开,你可以根据实际需求对内容进行调整,比如增加更多具体研究案例、实验数据等。