中国地面太阳总辐射逐日资料

数据内容

数据包含站点总辐射辐照度日数据

数据样例

Station_ID_CStaion_NameYearMonDayV14311
54832寿光2023116.2857
54832寿光2023127.7783
54832寿光2023138.3744
54832寿光2023147.191
54832寿光2023157.5062
54832寿光2023168.5052
54832寿光2023179.8221
54832寿光20231810.0143
54832寿光2023197.2864
54832寿光20231108.0234

字段说明

要素编码要素名称单位
V14311总辐射辐照度W/m2

数据量级

该数据集包含全国2000多个站点2022年1月1日至2023年12月31日的数据,不定期更新。

数据说明

基于ECMWF ERA5-Land陆面再分析资料为基准、配合中国地面气象站逐日观测资料以及部分时段的和站点的中国辐射日值数据集,使用机器学习方式训练所得,数据准确性分析请见:数据准确性评估

获取方式

可以在中国地面太阳总辐射逐日数据下载页面直接获取。

### 太阳辐射机器学习数据集下载 对于太阳辐射的机器学习数据集获取,存在多种途径和资源。中国地面太阳辐射逐日资料提供了基于ECMWF ERA5-Land陆面再分析资料中国地面气象逐日观测资料相结合的数据集合[^2]。该数据集采用机器学习方式进行训练处理,能够为用户提供高精度的日尺度太阳辐射量估计。 此外,还有其他类型的高质量太阳辐照度数据源可供选择。例如SolarCube作为专门针对太阳能领域设计的一个公开可用数据库,包含了由物理模型计算得出的具有较高时空分辨率(15分钟间隔)的太阳辐照记录[^1]。这些信息不仅有助于了解不同地理位置上的光照条件变化趋势,同时也非常适合用来开发测试新的算法或者改进现有预测技术。 当考虑具体应用场景时,可以根据需求选取合适的时间范围、地理区域等因素来筛选最适合自己项目特点的数据产品。通常情况下,上述提到的数据可以通过官方网站注册账号后免费申请访问权限并下载所需文件;部分高级功能或许会涉及到一定费用或是额外审批流程。 #### Python代码示例:如何从ERA5-Land API接口批量下载指定日期区间内的每日平均短波向下辐射通量数据 ```python import cdsapi c = cdsapi.Client() def fetch_era5land_radiation(year, month): c.retrieve( 'reanalysis-era5-land', { 'variable': 'surface_solar_radiation_downwards', 'year': str(year), 'month': f"{month:02d}", 'day': ['01', '02', '03'], 'time': [ '00:00', '01:00', '02:00', ... '22:00', '23:00' ], 'format': 'netcdf' }, f'radiation_{year}_{month}.nc') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值