CellDesigner插件开发中的PluginListOf缺陷

发现CellDesigner插件开发的库真的很不好用:缺乏很多基础的功能;而且有些方法居然 不对称:有appendProtein()却居然没有appendGene()。
比较严重的一点就是:PluginListOf:本来enzymer以为这是和JAVA中List类有着密切联系的一个类,但是阅读文档后才发现很令人失望:PluginListOf并不extends List,所以也就失去了所有List类所能够提供的功能:譬如这会儿Enzymer所急切需要的List合并。

文档中很多setListOf方法形同鸡肋:这些方法只是在SBML文档中的ListOf***部分添加相应的内容,却并不在图像中加以显示(SBML信息的重叠化),为了能够将图标显示,只能通过addSpecies方法

考虑到这是CellDesigner第一个插件开发版本——缺陷也在所难免,可惜很多地方作者考虑的并不周到:使得CellDesigner 4.0 alpha 版在开发SBML写入功能上并不能尽如人意。
APCS-MLR(Antigen Presenting Cell Model for Machine Learning and Receptor)是一个用于机器学习和受体研究的免疫细胞模型。实现APCS-MLR模型可以使用多种软件来进行仿真和建模。 一种常用的软件是MatLab(Matrix Laboratory), MatLab是一种高级技术计算语言和环境,用于数值计算、仿真和数据可视化。通过编写MatLab脚本或函数,可以实现APCS-MLR模型的各个方面,包括细胞行为、受体交互和机器学习算法。MatLab提供了丰富的科学计算工具箱和图形用户界面,便于实现与APCS-MLR相关的模型建立、数据分析和可视化。 另外,Python语言也是一个常用的选择。Python是一种高级编程语言,具有广泛的科学计算库和机器学习框架,例如NumPy、SciPy和Scikit-learn。使用Python可以编写脚本或函数来实现APCS-MLR模型,同时利用这些库进行数据处理、可视化和模型训练。Python具有简洁的语法和丰富的第三方库支持,使得实现APCS-MLR模型更加方便和灵活。 除了MatLab和Python,还有其他一些软件工具如NetLogo、Simulink和CellDesigner也可以用于实现APCS-MLR模型。这些工具在生物建模和仿真领域有着广泛的应用,并提供了各种功能和工作流程来支持细胞行为模拟、受体交互和机器学习算法的实现。 总之,实现APCS-MLR模型的软件选择主要取决于研究者的偏好和背景,MatLab和Python是最常见和受欢迎的选择,但也可以根据具体需求选择其他适合的软件工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值