- 博客(93)
- 收藏
- 关注
原创 UART怎么连接到上位机
上位机在串口助手里输入数据,USB 转串口模块发到 MCU RX,触发中断(HAL_UART_Receive_IT)。STM32 通过 UART 发送数据(HAL_UART_Transmit 或 printf 重定向)。打开串口助手软件(如 SSCOM、XCOM、PuTTY、Arduino 串口监视器)。,系统会安装驱动(CH340/CP2102 等)。里可以看到一个虚拟串口号(如 COM3)。MCU 就能收到指令,比如控制 LED。上位机串口助手能显示出数据。
2025-09-17 10:56:49
427
原创 tim是什么,有什么用,怎么用,channel是什么,有什么用,怎么用
TIM:定时器外设,用来计数,可以做定时中断、PWM、捕获等。TIM1:STM32 的高级定时器,功能最强,常用于电机控制。Channel(通道):定时器的“子通道”,可以独立输出 PWM 或做输入捕获。TIM1_CH1:就是 TIM1 的第一个通道,可以单独配置(比如输出 PWM 到某个引脚)。
2025-09-17 10:55:58
599
原创 光敏传感器两个信号口:AO 和 DO
引脚类型输出信号用途AO模拟量0~VCC 连续变化电压需要 ADC 采样,能得到光强大小DO数字量0 或 1阈值比较后,只能判断亮/暗AO 像一个“光照计”,能测光强度。DO 像一个“光控开关”,只能告诉你亮还是暗。
2025-09-10 17:49:42
736
原创 基于Cortex-M3内核的微控制器(MCU)系统架构图及其运行流程
总线矩阵实现了并行处理,让CPU和DMA可以几乎同时工作,互不干扰。多总线结构(ICode, DCode, System) 让Cortex-M3内核可以同时取指和取数,减少了“冯·诺依曼瓶颈”。DMA机制将CPU从繁琐的数据搬运中解放出来,极大地提高了数据吞吐率和系统效率,尤其是在处理音频、网络数据、显示屏刷新等大量数据流时至关重要。这种设计使得基于Cortex-M3的芯片既能保证强大的处理能力,又具有极高的能效比。
2025-08-28 17:27:28
910
原创 总结嵌入式领域接口
完整技术细节可参考工业标准文档(如I²C的NXP规范、USB-IF协议)。以上接口覆盖了嵌入式系统90%的应用场景,实际选型需结合。
2025-08-28 09:38:14
424
原创 解释stm项目工作流程
这张图片完美展示了一个STM32项目从芯片上电到执行你的代码启动->->main()。执行main()函数调用各种库函数 () 来配置和控制硬件(寄存器)。响应:当硬件事件(中断)发生时,流程跳转到中的函数进行处理,处理完再返回。支撑:整个过程由等基础头文件提供硬件定义支持。
2025-08-27 10:40:07
963
原创 stm中的中断是什么
特性描述本质一种高效的事件处理机制,由事件触发,而非CPU主动查询。核心价值提高效率和实时响应。让CPU可以专注处理主要任务,而非浪费在等待和查询上。关键部件中断源(谁引发)、NVIC(中断管家,负责裁决和管理)、ISR(中断服务程序,负责处理)。在STM32中的应用处理异步事件:按键、通信数据收发(UART, I2C, SPI)、定时器事件、ADC转换完成等。中断是STM32乃至所有现代MCU实现多任务和实时控制的基石。理解了中断,才算是真正入门了嵌入式编程。
2025-08-27 10:34:15
634
原创 枚举是什么
使用enum关键字来定义一个新的枚举类型,并列出所有可能的命名值(称为“枚举常量”)。// 定义了一个名为 TrafficLightState 的枚举类型RED, // 红灯,默认对应整数值 0YELLOW, // 黄灯,默认对应整数值 1GREEN // 绿灯,默认对应整数值 2编译器会自动为清单中的名字分配整数值,默认从0开始,依次递增1。RED = 1, // 显式指定为 1YELLOW, // 自动变为 2GREEN = 5 // 显式指定为 5你可能会想,用#define0。
2025-08-27 10:33:33
929
原创 零基础看懂树莓派电路图7
将微控制器(如BCM2835芯片)内部的工作信号,转换成稳定、安全、可被外部设备使用的物理接口,并实现与外部设备的各种通信和控制。您可以把这个电路图想象成一个国家的“外交部”和“海关总署”微控制器 (大脑):是国家的中央政府,负责做出所有决策。GPIO 引脚:是外交部里各种各样的办事窗口(签证窗、护照窗、公证窗),每个窗口可以处理不同业务。通信协议 (I²C, SPI, UART):是规定好的外交辞令和公文格式(例如照会、国书)。只有使用规定格式,对方国家才能理解。电阻 (R1, R2):是海关的。
2025-08-23 15:22:34
1124
原创 零基础学习树莓派电路图6
它是什么:这是整个电路的核心与大脑,一个功能强大的微型处理器(CPU)。它需要什么:它需要稳定的+3.3V电压才能工作。直接给它+5V会烧毁它。电感 (L5)比喻:一个能量储存线圈,像是一个可以快速充放电的“飞轮”或“弹簧”。作用:它是开关电源降压电路的核心元件之一,与后续的二极管和电容配合,高效率地将较高的电压(+5V)降低到所需的电压(+3.3V)。二极管 (D18)比喻:一个单向阀。只允许电流从一个方向通过,反向则截止。作用:在这个电路中,它被称为“续流二极管”。
2025-08-23 15:20:16
845
原创 零基础学习树莓派电路图5
为“大脑”BCM2835芯片和它的“临时记忆”SDRAM,提供极其稳定和干净的1.8V工作电压,确保它们能高速、无误地工作。你可以把它想象成一个城市的“高级净水供水系统”,它不生产水,而是把来自水厂的水进行精细过滤,然后通过独立的管道输送给市政府大楼(BCM2835)和各个图书馆(SDRAM)的每一个用水点。您可以把这个电路图想象成一座顶级数据中心的核心供电系统+1V8:是从城市电网接入的高压专用线路。:是分布在整个数据中心内部,通往不同服务器机柜的独立电缆。4.7uF 和 100nF 电容:是安装在。
2025-08-23 11:39:12
609
原创 零基础学习树莓派电路4
它是什么:这是整个电路图的核心与大脑,是一个功能强大的微型处理器(CPU)。它内部有数十亿个晶体管,就像城市里无数的家庭、工厂和办公楼。它需要什么:和城市一样,它需要稳定的电力供应(+3V3)和高效的废水处理系统(GND)来维持运转。电容 (C89, 100n)比喻紧挨着用电设备的“微型蓄水池”或“稳压器”。作用去耦/滤波。它的主要任务是消除电源线的微小波动和噪声。
2025-08-23 11:18:32
583
原创 零基础学习树莓派电路3
它是什么:这是整个电路图的核心,是一个功能强大的微型处理器(CPU),就像电脑的大脑。它需要什么:和大脑需要稳定的血液供应和规律的作息一样,它需要稳定的电压和精确的时钟信号才能思考和工作。电容 (C87, C82, C81, C83, C86, C74)比喻微型蓄电池/缓冲水池。这是电路中最重要的配角之一。作用滤波/去耦/储能。在电源部分,它们的作用是吸收电压的微小波动,为芯片提供瞬间的电流需求,保证电压像平静的湖面一样稳定,没有涟漪。在晶振部分,它们的作用是帮助晶振起振并稳定工作。
2025-08-23 11:03:51
801
原创 零基础看懂树莓派的电路图2
线性稳压器 (NCP1117, LP2980)比喻智能水压减压阀。不管进来的水压怎么波动,它总能精确地将出口的水压降低并稳定在一个固定的值。作用:它们是本电路的核心。负责将输入的较高电压(+5V)高效、稳定地降低到指定的较低电压。引脚:通常有三个主要引脚:Vi (或 VIN)电压输入引脚,接收来自前级的较高电压。Vo (或 OUT)电压输出引脚,输出稳定后的目标电压。GND (或 COM)接地引脚,是电流的回路。电容 (C12, C11, C8, C15…)比喻蓄水池/缓冲池。
2025-08-23 10:33:37
730
原创 零基础看懂树莓派的电路图1
从一个标准的Micro USB接口接入5V电源,经过一系列“净化”和“保护”处理,得到一个稳定、干净的+5V电压,供设备内部的其他芯片和元件使用。它保证了外来的电源是安全的,不会损坏设备内部娇贵的芯片。你可以把整个电路想象成一个净水系统USB接口:总进水口。保险丝 F3:总阀门,水流量太大自动关闭。稳压管 D17:减压阀,防止水压过高冲坏水管。电容 C6, C3, C2:多级过滤和蓄水池,消除水压波动和杂质,保证出水平稳纯净。输出 TP1:最终的水龙头,流出可以直接饮用的纯净水。
2025-08-23 10:23:20
1003
原创 Hadoop、Hive 和 Spark
是基础。提供分布式存储 (HDFS)和集群资源管理 (YARN)。相当于图书馆的物理书架和管理员调度系统。是工具。建立在 Hadoop 之上(主要是 HDFS)。让你能用SQL查询存储在 HDFS 上的数据。相当于图书馆的SQL查询终端。它需要一个执行引擎(可以是 MapReduce 或 Spark)。是引擎。是一个强大的数据处理引擎。它可以:直接读取 HDFS(或其他地方)的数据进行处理。作为 Hive 的执行引擎(代替 MapReduce),让 Hive SQL 跑得更快。
2025-08-20 15:04:50
681
原创 HDR(High Dynamic Range,高动态范围)
高动态范围)是摄像技术中的一种重要功能,用于显著提升图像或视频的明暗细节表现能力。
2025-08-15 10:53:42
937
原创 特征选取总结
以下是针对论文中特征提取体系的系统梳理与扩展,结合原文(第三章3.1.1节、3.2.2节及第四章)描述的30个特征,按类别整合补充为。
2025-08-08 10:42:47
866
原创 零基础学习什么是 I/O 密集型和什么是 CPU 密集型
I/O 密集型(I/O-bound)读写磁盘文件网络请求 / 响应数据库查询用户输入 / 输出这些操作往往要等硬件或网络完成数据传输,CPU 绝大多数时间处于“等待”状态。CPU 密集型(CPU-bound)数值计算(矩阵乘法、图像处理)加密/解密算法大规模数据排序/聚合科学仿真这些操作对 CPU 运算能力要求高,基本不会因为 I/O 而阻塞。
2025-08-06 11:00:57
451
原创 零基础学习多进程和多线程
线程轻量,适合 I/O 密集型;但受 GIL 限制,CPU 密集型效果有限。进程重量,适合 CPU 密集型,可充分利用多核;但进程启动/切换开销更大。Python 提供了threadingPool等高级接口,使用方便。编写并发程序时,注意线程/进程安全资源管理异常处理进程间通信等细节。掌握了以上基础,你就可以根据实际任务需求,在 Python 中灵活地选择多线程或多进程来提升程序性能了!如果还有具体场景或代码问题,欢迎继续交流~
2025-08-06 10:44:16
891
原创 使用电脑摄像头进行指定目标跟踪
这是一个基于计算机视觉的目标跟踪器,结合了KCF跟踪算法、Kalman滤波器和特征匹配技术。目标选择(通过鼠标交互)实时跟踪(融合KCF和Kalman)目标丢失时的恢复机制图像预处理和状态管理多算法融合KCF算法提供精确的短期跟踪Kalman滤波器预测目标运动轨迹当KCF失败时自动尝试重新初始化鲁棒性设计最小区域检查 (10x10像素)最后有效位置恢复机制错误计数和重试限制用户友好交互完整的鼠标交互系统实时视觉反馈(红框/绿框)状态信息显示和操作提示扩展性设计。
2025-08-06 09:00:10
340
原创 零基础学习单目深度估计核心算法一:尺度与平移不变损失函数
我们将通过概念类比、数学简化、实际示例逐步拆解其设计原理和实现方式,确保无需先验知识也能理解。:初中数学的直线拟合 (y=ax+b),此处拟合 (d^* = s \cdot d + t)。:如同用“自适应可变形尺子”测量不同场景——尺子自动伸缩调零,且忽略明显异常的刻度值。:用厘米刻度的尺子测量千米距离,数值溢出;用未调零的秤称重,结果整体偏移。:先统一“归零”(平移),再统一“伸缩”到相同波动范围(尺度)。:避免噪声干扰模型学习,提升泛化性。以下是针对零基础读者设计的。
2025-08-04 16:54:08
1078
原创 零基础详细讲解单目深度估计--MiDas算法
全文基于论文《Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer》的内容,确保讲解通俗易懂。直接混合数据集(如均匀采样)可能导致大数据集主导训练。不同数据集的深度标注存在尺度(范围不同)和平移(偏移不同)问题。:75K训练帧(19部电影)+3K验证帧+788测试帧。在6个未见数据集上测试,模型显著超越SOTA(表10)。,包含23部电影(如《霍比特人》《蜘蛛侠》)。
2025-08-04 16:53:07
2162
原创 零基础学习单目深度估计模型--MiDaS
注:本文实验耗时约6 GPU月,覆盖6个测试集,在零样本设定下超越所有基线方法(表10),为单目深度估计提供新范式。
2025-08-04 16:51:51
695
原创 零基础学习单目深度估计
输入:一张 RGB 图像输出:一张灰度图,每个像素的数值表示它离相机有多远(Depth Map)🎯目标:在没有激光雷达或双目相机的情况下,仅靠一张图像预测深度。方法编码器类型是否支持多尺度是否强解码器泛化能力特点U-Net卷积 (轻量)✅ 一般✅ 强中等简洁高效,易实现Hourglass卷积 + 堆叠✅ 强✅中等偏强能捕捉全局上下文MiDaS✅ 多尺度融合✅ 多分支✅ 非常强跨数据集强,适合应用部署想快速上手、理解结构:从U-Net开始,最好改造成深度估计模型训练;
2025-08-02 10:16:47
812
原创 零基础学习Anchor-based 与 Anchor-free
目标检测(Object Detection)是指从一张图片中,找出目标的位置(bounding box)和类别(class),比如在一张街道照片中检测出“人、车、狗”等。Anchor(锚框)可以理解为是事先在图片上“预放”的很多种不同大小和长宽比例的候选框。这些框不是真实的目标框,而是模型“猜测”的起点,后续会用这些框去拟合真实目标。你提前在地图上画好几个不同尺寸的框(预设目标可能出现的位置),然后模型学习怎么调整这些框去贴合图片里真实的目标。对比点是否预设框。
2025-08-02 08:36:30
566
原创 零基础学习3D单目目标检测
单目 3D 检测是一个结合深度估计、几何约束与端到端学习的综合性任务。打牢 2D 检测与相机几何基础;熟悉深度估计与点云表示;梳理方法脉络:几何先验、伪点云、端到端、BEV-Transformer;实践路线:环境搭建 → 分阶段/端到端 → 多任务 → 域适应 → 可视化调试;持续阅读前沿论文并动手复现、迭代。
2025-08-01 16:26:25
4274
原创 零基础利用deepseek学习上采样和下采样
fill:#333;color:#333;color:#333;fill:none;输入图像空间信息下采样路径上采样路径深层语义特征高分辨率细节特征融合多尺度检测上采样和下采样共同构建了多尺度特征金字塔信息完整性:深层语义+浅层细节的融合高效计算:仅在关键层保持高分辨率尺度鲁棒性:通过不同分辨率层处理不同大小目标在YOLOv8中,正是通过上采样和下采样的巧妙组合,才实现了在保持高精度的同时达到实时检测的性能。
2025-07-31 10:34:31
2528
1
原创 零基础利用deepseek学习yolov8源码
下面我们从零基础出发,逐步拆解这段 YOLOv8-l 配置中backbone(主干网络)和head(检测头)的语法与功能,并结合常见输入分辨率 640×640,画出骨架结构示意图,标注各层的输入/输出特征图大小。
2025-07-31 10:28:53
465
原创 零基础利用deepseek学习yolov8源码
高效的多尺度特征提取通过级联池化扩展感受野保留不同尺度的空间信息速度优化创新复用相同池化层减少计算比传统SPP快约30%结构设计优势输入输出特征图尺寸不变通道控制减少计算量兼容各种特征图分辨率实际意义:在YOLOv8中,SPPF位于主干网络末端,作为特征提取的最后阶段,为后续检测头提供具有丰富空间信息的特征图。它的设计体现了YOLOv8在精度和速度上的平衡优化。
2025-07-31 09:48:16
729
原创 零基础利用deepseek学习yolov8源码
特征保留机制:split操作确保原始特征直接传递深度特征提取:多个串联Bottleneck提取高阶特征高效特征融合:concat操作结合多级特征轻量化设计:通过扩展系数e控制计算量YOLOv8改进说明更强的信息流(直接保留原始特征)更灵活的特征表达(多阶段特征图拼接)更高的计算效率(更低FLOPs)正是这些改进使得YOLOv8在保持精度的同时提高了推理速度理解C2f模块对于掌握YOLOv8架构至关重要,它构成了网络的主干结构,在多种尺度特征图处理中都起到核心作用。
2025-07-31 09:40:56
711
【数学建模竞赛】2023亚太地区数学建模竞赛论文格式与提交规范:电子版解决方案及附件提交要求说明
2025-07-18
航天领域基于机器学习和深度学习的两行定轨元改进轨道预测:低地球轨道卫星和空间碎片高精度轨道预报系统设计
2025-07-18
深度学习基于线性神经网络与卷积神经网络的基础理论及应用
2025-07-18
【数学建模竞赛】2023年第十三届APMCM亚太地区大学生参赛纪律与论文提交指南:确保顺利参赛和提交流程详解
2025-07-18
【数学建模竞赛】2023APMCM参赛队伍信息及选题概要:团队编号与问题选择记录表设计
2025-07-18
【数学建模竞赛】2023APMCM参赛团队声明与规则确认:成员签名及权利转让协议设计您的要求生成
2025-07-18
农业工程基于数学建模的玻璃温室微气候调控系统设计:温度与风速分布优化分析及作物生长适宜性评估
2025-07-18
【数学建模竞赛】亚太地区水果采摘机器人图像识别挑战:苹果图像特征分析与模型建立
2025-07-18
统计学多元正态分布参数估计的R语言实现
2025-07-18
本文提出了一种基于预测模型的时间序列异常检测方法,利用Transformer和一维卷积神经网络(1D CNN)来捕捉时间序列数据的动态模式
2025-07-18
### 【自然语言处理】基于自注意力机制的Transformer模型:机器翻译与句法分析中的应用
2025-07-18
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅