自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(93)
  • 收藏
  • 关注

原创 UART怎么连接到上位机

上位机在串口助手里输入数据,USB 转串口模块发到 MCU RX,触发中断(HAL_UART_Receive_IT)。STM32 通过 UART 发送数据(HAL_UART_Transmit 或 printf 重定向)。打开串口助手软件(如 SSCOM、XCOM、PuTTY、Arduino 串口监视器)。,系统会安装驱动(CH340/CP2102 等)。里可以看到一个虚拟串口号(如 COM3)。MCU 就能收到指令,比如控制 LED。上位机串口助手能显示出数据。

2025-09-17 10:56:49 427

原创 tim是什么,有什么用,怎么用,channel是什么,有什么用,怎么用

TIM:定时器外设,用来计数,可以做定时中断、PWM、捕获等。TIM1:STM32 的高级定时器,功能最强,常用于电机控制。Channel(通道):定时器的“子通道”,可以独立输出 PWM 或做输入捕获。TIM1_CH1:就是 TIM1 的第一个通道,可以单独配置(比如输出 PWM 到某个引脚)。

2025-09-17 10:55:58 599

原创 光敏传感器两个信号口:AO 和 DO

引脚类型输出信号用途AO模拟量0~VCC 连续变化电压需要 ADC 采样,能得到光强大小DO数字量0 或 1阈值比较后,只能判断亮/暗AO 像一个“光照计”,能测光强度。DO 像一个“光控开关”,只能告诉你亮还是暗。

2025-09-10 17:49:42 736

原创 基于Cortex-M3内核的微控制器(MCU)系统架构图及其运行流程

总线矩阵实现了并行处理,让CPU和DMA可以几乎同时工作,互不干扰。多总线结构(ICode, DCode, System) 让Cortex-M3内核可以同时取指和取数,减少了“冯·诺依曼瓶颈”。DMA机制将CPU从繁琐的数据搬运中解放出来,极大地提高了数据吞吐率和系统效率,尤其是在处理音频、网络数据、显示屏刷新等大量数据流时至关重要。这种设计使得基于Cortex-M3的芯片既能保证强大的处理能力,又具有极高的能效比。

2025-08-28 17:27:28 910

原创 总结嵌入式领域接口

完整技术细节可参考工业标准文档(如I²C的NXP规范、USB-IF协议)。以上接口覆盖了嵌入式系统90%的应用场景,实际选型需结合。

2025-08-28 09:38:14 424

原创 解释stm项目工作流程

这张图片完美展示了一个STM32项目从芯片上电到执行你的代码启动->->main()。执行main()函数调用各种库函数 () 来配置和控制硬件(寄存器)。响应:当硬件事件(中断)发生时,流程跳转到中的函数进行处理,处理完再返回。支撑:整个过程由等基础头文件提供硬件定义支持。

2025-08-27 10:40:07 963

原创 stm中的中断是什么

特性描述本质一种高效的事件处理机制,由事件触发,而非CPU主动查询。核心价值提高效率和实时响应。让CPU可以专注处理主要任务,而非浪费在等待和查询上。关键部件中断源(谁引发)、NVIC(中断管家,负责裁决和管理)、ISR(中断服务程序,负责处理)。在STM32中的应用处理异步事件:按键、通信数据收发(UART, I2C, SPI)、定时器事件、ADC转换完成等。中断是STM32乃至所有现代MCU实现多任务和实时控制的基石。理解了中断,才算是真正入门了嵌入式编程。

2025-08-27 10:34:15 634

原创 枚举是什么

使用enum关键字来定义一个新的枚举类型,并列出所有可能的命名值(称为“枚举常量”)。// 定义了一个名为 TrafficLightState 的枚举类型RED, // 红灯,默认对应整数值 0YELLOW, // 黄灯,默认对应整数值 1GREEN // 绿灯,默认对应整数值 2编译器会自动为清单中的名字分配整数值,默认从0开始,依次递增1。RED = 1, // 显式指定为 1YELLOW, // 自动变为 2GREEN = 5 // 显式指定为 5你可能会想,用#define0。

2025-08-27 10:33:33 929

原创 零基础看懂树莓派电路图7

将微控制器(如BCM2835芯片)内部的工作信号,转换成稳定、安全、可被外部设备使用的物理接口,并实现与外部设备的各种通信和控制。您可以把这个电路图想象成一个国家的“外交部”和“海关总署”微控制器 (大脑):是国家的中央政府,负责做出所有决策。GPIO 引脚:是外交部里各种各样的办事窗口(签证窗、护照窗、公证窗),每个窗口可以处理不同业务。通信协议 (I²C, SPI, UART):是规定好的外交辞令和公文格式(例如照会、国书)。只有使用规定格式,对方国家才能理解。电阻 (R1, R2):是海关的。

2025-08-23 15:22:34 1124

原创 零基础学习树莓派电路图6

它是什么:这是整个电路的核心与大脑,一个功能强大的微型处理器(CPU)。它需要什么:它需要稳定的+3.3V电压才能工作。直接给它+5V会烧毁它。电感 (L5)比喻:一个能量储存线圈,像是一个可以快速充放电的“飞轮”或“弹簧”。作用:它是开关电源降压电路的核心元件之一,与后续的二极管和电容配合,高效率地将较高的电压(+5V)降低到所需的电压(+3.3V)。二极管 (D18)比喻:一个单向阀。只允许电流从一个方向通过,反向则截止。作用:在这个电路中,它被称为“续流二极管”。

2025-08-23 15:20:16 845

原创 零基础学习树莓派电路图5

为“大脑”BCM2835芯片和它的“临时记忆”SDRAM,提供极其稳定和干净的1.8V工作电压,确保它们能高速、无误地工作。你可以把它想象成一个城市的“高级净水供水系统”,它不生产水,而是把来自水厂的水进行精细过滤,然后通过独立的管道输送给市政府大楼(BCM2835)和各个图书馆(SDRAM)的每一个用水点。您可以把这个电路图想象成一座顶级数据中心的核心供电系统+1V8:是从城市电网接入的高压专用线路。:是分布在整个数据中心内部,通往不同服务器机柜的独立电缆。4.7uF 和 100nF 电容:是安装在。

2025-08-23 11:39:12 609

原创 零基础学习树莓派电路4

它是什么:这是整个电路图的核心与大脑,是一个功能强大的微型处理器(CPU)。它内部有数十亿个晶体管,就像城市里无数的家庭、工厂和办公楼。它需要什么:和城市一样,它需要稳定的电力供应(+3V3)和高效的废水处理系统(GND)来维持运转。电容 (C89, 100n)比喻紧挨着用电设备的“微型蓄水池”或“稳压器”。作用去耦/滤波。它的主要任务是消除电源线的微小波动和噪声。

2025-08-23 11:18:32 583

原创 零基础学习树莓派电路3

它是什么:这是整个电路图的核心,是一个功能强大的微型处理器(CPU),就像电脑的大脑。它需要什么:和大脑需要稳定的血液供应和规律的作息一样,它需要稳定的电压和精确的时钟信号才能思考和工作。电容 (C87, C82, C81, C83, C86, C74)比喻微型蓄电池/缓冲水池。这是电路中最重要的配角之一。作用滤波/去耦/储能。在电源部分,它们的作用是吸收电压的微小波动,为芯片提供瞬间的电流需求,保证电压像平静的湖面一样稳定,没有涟漪。在晶振部分,它们的作用是帮助晶振起振并稳定工作。

2025-08-23 11:03:51 801

原创 零基础看懂树莓派的电路图2

线性稳压器 (NCP1117, LP2980)比喻智能水压减压阀。不管进来的水压怎么波动,它总能精确地将出口的水压降低并稳定在一个固定的值。作用:它们是本电路的核心。负责将输入的较高电压(+5V)高效、稳定地降低到指定的较低电压。引脚:通常有三个主要引脚:Vi (或 VIN)电压输入引脚,接收来自前级的较高电压。Vo (或 OUT)电压输出引脚,输出稳定后的目标电压。GND (或 COM)接地引脚,是电流的回路。电容 (C12, C11, C8, C15…)比喻蓄水池/缓冲池。

2025-08-23 10:33:37 730

原创 零基础看懂树莓派的电路图1

从一个标准的Micro USB接口接入5V电源,经过一系列“净化”和“保护”处理,得到一个稳定、干净的+5V电压,供设备内部的其他芯片和元件使用。它保证了外来的电源是安全的,不会损坏设备内部娇贵的芯片。你可以把整个电路想象成一个净水系统USB接口:总进水口。保险丝 F3:总阀门,水流量太大自动关闭。稳压管 D17:减压阀,防止水压过高冲坏水管。电容 C6, C3, C2:多级过滤和蓄水池,消除水压波动和杂质,保证出水平稳纯净。输出 TP1:最终的水龙头,流出可以直接饮用的纯净水。

2025-08-23 10:23:20 1003

原创 Hadoop、Hive 和 Spark

是基础。提供分布式存储 (HDFS)和集群资源管理 (YARN)。相当于图书馆的物理书架和管理员调度系统。是工具。建立在 Hadoop 之上(主要是 HDFS)。让你能用SQL查询存储在 HDFS 上的数据。相当于图书馆的SQL查询终端。它需要一个执行引擎(可以是 MapReduce 或 Spark)。是引擎。是一个强大的数据处理引擎。它可以:直接读取 HDFS(或其他地方)的数据进行处理。作为 Hive 的执行引擎(代替 MapReduce),让 Hive SQL 跑得更快。

2025-08-20 15:04:50 681

原创 电路硬件知识与PCB设计

此框架覆盖硬件设计全流程,建议配合实验平台(如STM32开发板)实践以巩固理论。表:常见通信协议对比。

2025-08-16 15:22:06 974

原创 MSE,RMSE,MAE三者的对比

RMSE(平衡单位一致性和误差惩罚):结合RMSE与MAE差值。

2025-08-16 10:31:08 619

原创 I²C是什么

【代码】I²C是什么。

2025-08-15 16:53:29 948

原创 PWM信号是什么

用PWM控制振动电机 → 调整占空比可模拟手机震动强度!

2025-08-15 16:52:48 1090

原创 零基础讲解PCA9685模块是什么

【代码】零基础讲解PCA9685模块是什么。

2025-08-15 16:47:05 666

原创 PID控制算法讲解

让摄像头中心(320,240)始终对准人体检测框中心(x,y)= 目标值 - 当前值。

2025-08-15 16:45:37 1128

原创 HDR(​​High Dynamic Range​​,高动态范围)

高动态范围)是摄像技术中的一种重要功能,用于显著提升图像或视频的明暗细节表现能力。

2025-08-15 10:53:42 937

原创 智能指针(std::shared_ptr)简化Qt对象生命周期管理

shared_ptr。

2025-08-12 16:49:38 576

原创 Qt可视化界面开发学习

每个项目重点攻克1-2个新模块(如文件操作、图表),避免一次性学过多。

2025-08-12 14:16:15 702

原创 特征选取总结

以下是针对论文中特征提取体系的系统梳理与扩展,结合原文(第三章3.1.1节、3.2.2节及第四章)描述的30个特征,按类别整合补充为。

2025-08-08 10:42:47 866

原创 零基础讲解线程和进程的关系

进程是操作系统分配资源(CPU 时间、内存、文件句柄等)的基本单位。

2025-08-06 11:03:15 419

原创 零基础学习什么是 I/O 密集型和什么是 CPU 密集型

I/O 密集型(I/O-bound)读写磁盘文件网络请求 / 响应数据库查询用户输入 / 输出这些操作往往要等硬件或网络完成数据传输,CPU 绝大多数时间处于“等待”状态。CPU 密集型(CPU-bound)数值计算(矩阵乘法、图像处理)加密/解密算法大规模数据排序/聚合科学仿真这些操作对 CPU 运算能力要求高,基本不会因为 I/O 而阻塞。

2025-08-06 11:00:57 451

原创 零基础学习多进程和多线程

线程轻量,适合 I/O 密集型;但受 GIL 限制,CPU 密集型效果有限。进程重量,适合 CPU 密集型,可充分利用多核;但进程启动/切换开销更大。Python 提供了threadingPool等高级接口,使用方便。编写并发程序时,注意线程/进程安全资源管理异常处理进程间通信等细节。掌握了以上基础,你就可以根据实际任务需求,在 Python 中灵活地选择多线程或多进程来提升程序性能了!如果还有具体场景或代码问题,欢迎继续交流~

2025-08-06 10:44:16 891

原创 使用电脑摄像头进行指定目标跟踪

这是一个基于计算机视觉的目标跟踪器,结合了KCF跟踪算法、Kalman滤波器和特征匹配技术。目标选择(通过鼠标交互)实时跟踪(融合KCF和Kalman)目标丢失时的恢复机制图像预处理和状态管理多算法融合KCF算法提供精确的短期跟踪Kalman滤波器预测目标运动轨迹当KCF失败时自动尝试重新初始化鲁棒性设计最小区域检查 (10x10像素)最后有效位置恢复机制错误计数和重试限制用户友好交互完整的鼠标交互系统实时视觉反馈(红框/绿框)状态信息显示和操作提示扩展性设计。

2025-08-06 09:00:10 340

原创 零基础学习单目深度估计核心算法一:尺度与平移不变损失函数

我们将通过概念类比、数学简化、实际示例逐步拆解其设计原理和实现方式,确保无需先验知识也能理解。:初中数学的直线拟合 (y=ax+b),此处拟合 (d^* = s \cdot d + t)。:如同用“自适应可变形尺子”测量不同场景——尺子自动伸缩调零,且忽略明显异常的刻度值。:用厘米刻度的尺子测量千米距离,数值溢出;用未调零的秤称重,结果整体偏移。:先统一“归零”(平移),再统一“伸缩”到相同波动范围(尺度)。:避免噪声干扰模型学习,提升泛化性。以下是针对零基础读者设计的。

2025-08-04 16:54:08 1078

原创 零基础详细讲解单目深度估计--MiDas算法

全文基于论文《Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer》的内容,确保讲解通俗易懂。直接混合数据集(如均匀采样)可能导致大数据集主导训练。不同数据集的深度标注存在尺度(范围不同)和平移(偏移不同)问题。:75K训练帧(19部电影)+3K验证帧+788测试帧。在6个未见数据集上测试,模型显著超越SOTA(表10)。,包含23部电影(如《霍比特人》《蜘蛛侠》)。

2025-08-04 16:53:07 2162

原创 零基础学习单目深度估计模型--MiDaS

注:本文实验耗时约6 GPU月,覆盖6个测试集,在零样本设定下超越所有基线方法(表10),为单目深度估计提供新范式。

2025-08-04 16:51:51 695

原创 零基础学习单目深度估计

输入:一张 RGB 图像输出:一张灰度图,每个像素的数值表示它离相机有多远(Depth Map)🎯目标:在没有激光雷达或双目相机的情况下,仅靠一张图像预测深度。方法编码器类型是否支持多尺度是否强解码器泛化能力特点U-Net卷积 (轻量)✅ 一般✅ 强中等简洁高效,易实现Hourglass卷积 + 堆叠✅ 强✅中等偏强能捕捉全局上下文MiDaS✅ 多尺度融合✅ 多分支✅ 非常强跨数据集强,适合应用部署想快速上手、理解结构:从U-Net开始,最好改造成深度估计模型训练;

2025-08-02 10:16:47 812

原创 零基础学习Anchor-based 与 Anchor-free

目标检测(Object Detection)是指从一张图片中,找出目标的位置(bounding box)和类别(class),比如在一张街道照片中检测出“人、车、狗”等。Anchor(锚框)可以理解为是事先在图片上“预放”的很多种不同大小和长宽比例的候选框。这些框不是真实的目标框,而是模型“猜测”的起点,后续会用这些框去拟合真实目标。你提前在地图上画好几个不同尺寸的框(预设目标可能出现的位置),然后模型学习怎么调整这些框去贴合图片里真实的目标。对比点是否预设框。

2025-08-02 08:36:30 566

原创 零基础学习3D单目目标检测

单目 3D 检测是一个结合深度估计、几何约束与端到端学习的综合性任务。打牢 2D 检测与相机几何基础;熟悉深度估计与点云表示;梳理方法脉络:几何先验、伪点云、端到端、BEV-Transformer;实践路线:环境搭建 → 分阶段/端到端 → 多任务 → 域适应 → 可视化调试;持续阅读前沿论文并动手复现、迭代。

2025-08-01 16:26:25 4274

原创 零基础利用deepseek学习上采样和下采样

fill:#333;color:#333;color:#333;fill:none;输入图像空间信息下采样路径上采样路径深层语义特征高分辨率细节特征融合多尺度检测上采样和下采样共同构建了多尺度特征金字塔信息完整性:深层语义+浅层细节的融合高效计算:仅在关键层保持高分辨率尺度鲁棒性:通过不同分辨率层处理不同大小目标在YOLOv8中,正是通过上采样和下采样的巧妙组合,才实现了在保持高精度的同时达到实时检测的性能。

2025-07-31 10:34:31 2528 1

原创 零基础利用deepseek学习yolov8源码

下面我们从零基础出发,逐步拆解这段 YOLOv8-l 配置中backbone(主干网络)和head(检测头)的语法与功能,并结合常见输入分辨率 640×640,画出骨架结构示意图,标注各层的输入/输出特征图大小。

2025-07-31 10:28:53 465

原创 零基础利用deepseek学习yolov8源码

高效的多尺度特征提取通过级联池化扩展感受野保留不同尺度的空间信息速度优化创新复用相同池化层减少计算比传统SPP快约30%结构设计优势输入输出特征图尺寸不变通道控制减少计算量兼容各种特征图分辨率实际意义:在YOLOv8中,SPPF位于主干网络末端,作为特征提取的最后阶段,为后续检测头提供具有丰富空间信息的特征图。它的设计体现了YOLOv8在精度和速度上的平衡优化。

2025-07-31 09:48:16 729

原创 零基础利用deepseek学习yolov8源码

特征保留机制:split操作确保原始特征直接传递深度特征提取:多个串联Bottleneck提取高阶特征高效特征融合:concat操作结合多级特征轻量化设计:通过扩展系数e控制计算量YOLOv8改进说明更强的信息流(直接保留原始特征)更灵活的特征表达(多阶段特征图拼接)更高的计算效率(更低FLOPs)正是这些改进使得YOLOv8在保持精度的同时提高了推理速度理解C2f模块对于掌握YOLOv8架构至关重要,它构成了网络的主干结构,在多种尺度特征图处理中都起到核心作用。

2025-07-31 09:40:56 711

【数学建模竞赛】2023亚太地区数学建模竞赛论文格式与提交规范:电子版解决方案及附件提交要求说明

内容概要:本文档详细规定了2023年亚太地区数学建模竞赛论文的格式与提交规范。参赛团队需从A、B、C题中选择一题作答,并确保所选题目编号与注册系统填写的一致,否则将被取消资格。团队须通过指定网站提交电子版论文、签名后的控制页(PDF或JPG格式)以及支撑材料压缩包,文件命名有严格规则,如选A题的团队编号为apmcm2300001,则论文命名为“Aapmcm2300001.pdf”。论文首页为摘要页,次页为目录页,正文要求思路清晰、表述简洁、字体易读且全文须用英文撰写,主体部分不超过25页。引用他人成果或公开信息时,必须按规定的参考文献格式明确标注。附录中应列出使用的软件名称及所有源代码并保留至获奖名单公布以备测试。此外,论文排版虽无具体要求但应美观大方。不合规的论文将被视为违规并被直接取消资格。; 适合人群:参加2023年亚太地区数学建模竞赛的团队成员及指导教师。; 使用场景及目标:①确保参赛团队按照官方要求正确准备和提交竞赛所需的全部文件;②帮助参赛者理解论文写作的具体格式要求,包括但不限于文件命名、内容结构、语言使用、引用规范等。; 其他说明:竞赛组委会对本规范拥有最终解释权。

2025-07-18

航天领域基于机器学习和深度学习的两行定轨元改进轨道预测:低地球轨道卫星和空间碎片高精度轨道预报系统设计

内容概要:本文提出了一种基于机器学习(ML)和深度学习(DL)的方法来提高两行元素(TLE)轨道预测的准确性。由于传统的TLE/SGP4系统在长时间轨道预测中存在较大误差,本文通过挖掘历史TLE数据中的轨道误差模式并将其应用于未来预测,以改进低地球轨道(LEO)和高轨道空间物体的轨道预测精度。具体方法包括构建历史预测误差集、使用梯度提升决策树(GBDT)和卷积神经网络(CNN)建模误差模式以及利用这些模型对未来轨道预测进行修正。实验结果表明,该方法可显著提高未来14天内的轨道预测精度,在沿轨方向上提高了超过75%,在横向和径向方向上提高了超过90%。 适合人群:对空间目标轨道预测、机器学习和深度学习技术感兴趣的科研人员和技术专家。 使用场景及目标:①适用于需要精确轨道预测的空间任务,如卫星碰撞预警、太空碎片清理等;②提高基于公开TLE数据的轨道预测精度,满足空间态势感知(SSA)应用的需求。 其他说明:本文展示了ML/DL技术在航天领域的潜力,特别是对于提高基于公开TLE数据的轨道预测能力。此外,研究还探讨了训练数据量对模型性能的影响,发现60天的数据量能取得最佳的泛化效果。计算效率方面,ML/DL框架能够在普通笔记本电脑上高效运行,具有实际应用价值。

2025-07-18

深度学习基于线性神经网络与卷积神经网络的基础理论及应用

内容概要:本文档是《深度学习笔记基础版》,涵盖了从线性神经网络到现代卷积神经网络的基础理论与技术。文档首先介绍了线性回归,解释了如何通过线性模型预测连续值,并引入了损失函数、随机梯度下降等概念。接着,讨论了softmax回归及其在分类问题中的应用,包括独热编码和交叉熵损失函数。随后,文档深入探讨了多层感知机,包括隐藏层、激活函数(如ReLU、sigmoid、tanh)的作用。针对模型选择、欠拟合和过拟合问题,文档介绍了训练集、验证集和测试集的概念,以及K折交叉验证、权重衰减(L2正则化)、暂退法(dropout)等方法。最后,文档详细讲解了卷积神经网络(CNN),包括卷积层、互相关运算、填充和步幅、多输入多输出通道、汇聚层等概念,并介绍了经典的CNN架构如LeNet、AlexNet、VGG、GoogLeNet和ResNet。 适合人群:具备一定编程基础,对深度学习感兴趣的初学者或有一定经验的研发人员。 使用场景及目标:①理解线性回归、softmax回归等基本模型的工作原理;②掌握多层感知机的设计与实现;③学习卷积神经网络的基本概念及其在图像处理中的应用;④了解如何通过调参和正则化技术提升模型性能;⑤熟悉经典CNN架构的设计思想。 阅读建议:由于文档内容涵盖广泛,建议读者按章节逐步学习,结合实际代码实践,特别关注模型的设计思路和调参技巧。对于复杂的数学公式,可以参考相关文献进一步理解。

2025-07-18

​​2024年华中科技大学硕士研究生招生专业目录​

​​2024年华中科技大学硕士研究生招生专业目录​

2025-07-18

【数学建模竞赛】2023年第十三届APMCM亚太地区大学生参赛纪律与论文提交指南:确保顺利参赛和提交流程详解

内容概要:本文详细介绍了2023年第十三届APMCM亚太地区大学生数学建模竞赛的参赛纪律和论文提交方式。竞赛时间为2023年11月23日上午6点至11月27日上午9点,论文及相关材料需由队长在赛氪平台提交,提交截止时间为11月27日上午9点。参赛纪律方面,强调了严禁抄袭、购买论文以及参与竞赛思路交流群,对违反纪律的行为将取消评奖资格甚至公开通报。论文提交注意事项包括提前30分钟或1小时提交以防上传失败、控制页需打印签名、摘要页作为论文第一页且不能出现个人信息等。提交方式为登录赛氪网站按指引操作,若需重新上传可在竞赛结束前完成。还设有备用邮箱用于紧急情况下的提交,但强调已在赛氪成功提交的队伍禁止重复发送; 适合人群:准备参加2023年第十三届APMCM亚太地区大学生数学建模竞赛的学生团队; 使用场景及目标:帮助参赛者明确竞赛规则、掌握正确的论文提交流程,确保参赛过程顺利进行,避免因违反规定而失去评奖资格; 其他说明:所有参赛者务必严格遵守参赛纪律,仔细阅读并按照论文提交注意事项操作,确保竞赛公平公正地开展。

2025-07-18

【数学建模竞赛】2023APMCM参赛队伍信息及选题概要:团队编号与问题选择记录表设计

内容概要:本文档是2023年APMCM竞赛的摘要表,主要记录了参赛团队编号为apmcm23XXXXX的队伍信息以及所选题目(A、B或C)。文档内容较为简略,主要用于提交时的信息确认,确保团队编号与选择的问题匹配无误。; 适合人群:参与APMCM数学建模竞赛的团队成员及指导教师。; 使用场景及目标:①用于竞赛提交前的信息核对;②帮助团队确保所有信息准确无误地提交给竞赛组委会。; 阅读建议:此文档主要用于信息确认,建议参赛团队在提交作品前仔细核对团队编号和所选问题,确保无误后再进行提交。

2025-07-18

【数学建模竞赛】2023APMCM参赛团队声明与规则确认:成员签名及权利转让协议设计您的要求生成

内容概要:本文档为2023年APMCM竞赛的控制表,明确了团队成员必须签署声明,确保团队遵守比赛规则,未与非团队成员咨询解决方案。声明指出提交的作品及其发表权归APMCM所有,APMCM有权使用提交的内容进行宣传或其他用途,且无需支付报酬。同时,团队成员需保证提交材料中的图像、图表、引用等均为原创或已正确引用出处。文档还列出了需要填写的项目,如选择的题目(A/B/C)、团队编号、学校全名、团队成员姓名及签名、指导教师姓名等,并强调了填写内容需为英文,提交后不允许修改,否则可能导致资格取消。; 适合人群:参加2023年APMCM竞赛的团队成员及指导教师。; 使用场景及目标:用于参赛团队在提交作品前签署声明,确保符合竞赛规则,明确知识产权归属,保障竞赛的公平性和规范性。; 其他说明:文档要求团队成员仔细核对填写内容,确保无误,以避免因填写错误而导致资格被取消。所有填写内容需用英文,且签名必须为手写形式。

2025-07-18

农业工程基于数学建模的玻璃温室微气候调控系统设计:温度与风速分布优化分析及作物生长适宜性评估

内容概要:本文探讨了玻璃温室微气候调节的问题,重点在于通过优化温室风扇的设计来改善温室内温度和风速的分布及其均匀性,从而提高作物产量。文中详细描述了温室的具体参数(尺寸为10m×3m×2m),风扇的位置(位于左侧,中心高度1.3m)和工作条件(水平吹出40°C暖空气,平均速度2m/s)。此外,还考虑了作物对气流的影响,将作物简化为多孔介质模型。文章提出了四个问题,逐步引导建立数学模型以分析不同情况下温室内的温度和风速分布情况,并探讨了优化风扇设计的可能性,包括调整风扇数量、位置、风速、吹出温度等参数。 适合人群:从事农业工程、环境科学或相关领域的研究人员和技术人员,以及对温室种植感兴趣的农业从业者。 使用场景及目标:①理解温室内部微气候调节的重要性及其对作物生长的影响;②掌握如何通过数学建模方法分析和优化温室通风系统设计;③为实际温室建设提供理论依据和技术支持。 其他说明:本文基于严格的物理原理和数学方法进行研究,涉及流体力学、传热学等多个学科的知识。读者应具备一定的理工科背景,以便更好地理解和应用文中的理论和方法。

2025-07-18

【数学建模竞赛】亚太地区水果采摘机器人图像识别挑战:苹果图像特征分析与模型建立

内容概要:本文介绍了2023年亚太地区数学建模竞赛的题目A——用于水果采摘机器人的图像识别。中国是世界上最大的苹果生产国和出口国之一,但苹果采摘主要依靠手工,导致采摘季节劳动力短缺。为解决这一问题,自2011年起中国开始研究苹果采摘机器人。然而,果园环境复杂多变,现有机器人难以准确识别诸如“叶遮挡”、“枝遮挡”、“果遮挡”和“混合遮挡”等障碍物,这不仅影响采摘效率和果实质量,还可能导致机械损伤。因此,本次比赛旨在通过分析和提取标记水果图像的特征,建立高识别率、快速且准确的苹果图像识别模型,对图像进行数据分析,如自动计算数量、位置、成熟度和估算质量。具体任务包括:基于附件1的苹果图像数据集,完成苹果计数、位置估计、成熟度评估和质量估算;基于附件2的不同水果图像数据集训练苹果识别模型,并识别附件3中的苹果。 适合人群:对数学建模、图像识别、农业自动化感兴趣的科研人员、高校学生及相关从业者。 使用场景及目标:①帮助科研人员和学生理解如何通过图像识别技术解决实际农业问题;②为农业自动化领域提供新的思路和技术支持;③提升水果采摘机器人的智能化水平,提高采摘效率和果实质量。 其他说明:附件包含三个压缩包,分别提供了不同类型的水果图像数据集,供参赛者进行模型训练和测试。比赛官网提供了相关数据下载链接。

2025-07-18

统计学多元正态分布参数估计的R语言实现

内容概要:本文档详细介绍了多元正态分布的参数估计方法及其在R语言中的实现。首先,文档解释了多元正态分布的基本概念及其参数估计理论,指出多元正态总体均值向量和协差阵的最大似然估计分别是样本均值向量和样本协差阵。接着,文档逐步讲解了如何使用R语言进行数据处理和统计分析,包括R语言的安装、RStudio的使用、向量和矩阵运算、数据框操作以及文件读写等基础操作。最后,通过具体实例,演示了如何利用R软件对我国31个省(自治区、直辖市)的经济指标数据进行均值向量和协差阵的估计,并展示了数据标准化、协方差矩阵计算及可视化图形等实际操作步骤。 适合人群:具备一定统计学基础并希望深入学习多元正态分布参数估计方法的学者、研究人员或学生;以及对R语言感兴趣的编程爱好者。 使用场景及目标:①掌握多元正态分布的理论知识;②熟练运用R语言进行数据处理和统计分析;③通过实例操作,学会如何估算均值向量和协差阵,并进行数据可视化。 阅读建议:读者应先熟悉多元正态分布的基础知识,然后跟随文档中的步骤,结合R语言的具体操作,逐步实践并理解多元正态分布参数估计的过程。建议在阅读过程中,同步尝试文中提供的R代码,以加深理解和记忆。

2025-07-18

本文提出了一种基于预测模型的时间序列异常检测方法,利用Transformer和一维卷积神经网络(1D CNN)来捕捉时间序列数据的动态模式

内容概要:本文提出了一种基于预测模型的时间序列异常检测方法,利用Transformer和一维卷积神经网络(1D CNN)来捕捉时间序列数据的动态模式。该方法通过堆叠Transformer编码器层的多级表示并结合1D CNN解码器来融合多层次信息,从而有效地学习正常数据的分布。实验表明,该方法在Yahoo S5和NeurIPS-TS基准数据集上表现出色,优于现有的预测和重建方法。此外,通过消融研究验证了堆叠Transformer表示和使用1D CNN作为解码器的有效性。 适合人群:对时间序列异常检测、深度学习模型(如Transformer)、以及时间序列数据分析感兴趣的科研人员和技术开发者。 使用场景及目标:①适用于制造业、信息技术、医疗保健等行业中的系统维护和故障预防;②能够处理多变的时间序列数据,识别潜在的异常模式;③通过预测模型学习正常数据分布,检测偏离正常模式的数据点。 其他说明:本文还探讨了该方法不仅适用于单变量时间序列数据,也适用于多变量时间序列数据。未来研究可以探索多变量方面,并应用动态阈值以提高检测性能。实验设置中采用了保守的训练、验证和测试集比例,并进行了数据增强以防止过拟合。此外,该方法在计算效率方面表现良好,具有较少的参数量,适合实时框架下的异常检测任务。

2025-07-18

### 【自然语言处理】基于自注意力机制的Transformer模型:机器翻译与句法分析中的应用

内容概要:本文介绍了Transformer模型,一种全新的基于注意力机制的序列转换模型。传统模型多依赖于复杂的递归或卷积神经网络,而Transformer完全摒弃了这些结构,仅依靠自注意力机制来捕捉输入和输出之间的全局依赖关系。文章展示了Transformer在机器翻译任务上的优越性能,不仅训练速度更快,而且在WMT 2014英德和英法翻译任务上达到了新的最佳效果。此外,Transformer还在英语句法分析任务中表现出色,验证了其在不同任务中的泛化能力。 适合人群:对自然语言处理、深度学习尤其是序列建模和机器翻译感兴趣的科研人员和技术开发者。 使用场景及目标:①适用于需要高效并行计算的序列转换任务,如机器翻译、文本摘要等;②探索自注意力机制在不同类型任务中的应用潜力,如句法分析、问答系统等;③理解如何通过多头注意力机制提升模型性能,以及如何设计更有效的模型架构。 其他说明:Transformer的核心创新在于用自注意力机制替代传统的递归和卷积层,显著减少了训练时间和计算成本。该模型的成功为未来研究提供了新方向,包括扩展到非文本模态的任务(如图像、音频)和改进生成模型的非顺序性。项目代码已开源,方便研究人员进一步探索和改进。

2025-07-18

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除