编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:
每行的元素从左到右升序排列。 每列的元素从上到下升序排列。
示例 1:
输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
输出:true
示例 2:
输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20
输出:false
提示:
m == matrix.length
n == matrix[i].length
1 <= n, m <= 300
-109 <= matix[i][j] <= 109
每行的所有元素从左到右升序排列
每列的所有元素从上到下升序排列
-109 <= target <= 109
解析:
-
不算太难,但思路要对头,不然会有比较多问题。暴力遍历自然可以,但效率肯定不高。因为数据在纵向和横向是有规律的,需要利用这个规律减少遍历范围,提升性能。
-
思路一,从左向右,从上往下,如果一个元素比target小,则target可能在右、也可能在下,出现两种可能。
-
思路二,从左下角开始遍历,从下往上,从左到右。遍历过程中,如果target大于当前元素,则只可能在右边,不可能在上面,如果小于当前元素,则只可能在上面,不可能在右边。所以下一次遍历的目标的是唯一的。
-
这样来看的,思路二更好,更容易写出简洁的代码。
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
int h = matrix.length-1,v =0;
for (;h >= 0;h--) {
for (;v < matrix[h].length;v++) {
if (matrix[h][v] < target) {
continue;
} else if (matrix[h][v] > target) {
break;
} else {
return true;
}
}
}
return false;
}
}
题目来源:leetcode