算法-数组-矩阵查找

编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:


每行的元素从左到右升序排列。 每列的元素从上到下升序排列。

示例 1:
在这里插入图片描述

输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
输出:true

示例 2:
在这里插入图片描述

输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20
输出:false

提示:

m == matrix.length
n == matrix[i].length
1 <= n, m <= 300
-109 <= matix[i][j] <= 109
每行的所有元素从左到右升序排列
每列的所有元素从上到下升序排列
-109 <= target <= 109

解析:

  • 不算太难,但思路要对头,不然会有比较多问题。暴力遍历自然可以,但效率肯定不高。因为数据在纵向和横向是有规律的,需要利用这个规律减少遍历范围,提升性能。

  • 思路一,从左向右,从上往下,如果一个元素比target小,则target可能在右、也可能在下,出现两种可能。

  • 思路二,从左下角开始遍历,从下往上,从左到右。遍历过程中,如果target大于当前元素,则只可能在右边,不可能在上面,如果小于当前元素,则只可能在上面,不可能在右边。所以下一次遍历的目标的是唯一的。

  • 这样来看的,思路二更好,更容易写出简洁的代码。

class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        int h = matrix.length-1,v =0;
        for (;h >= 0;h--) {
            for (;v < matrix[h].length;v++) {
                if (matrix[h][v] < target) {
                    continue;
                } else if (matrix[h][v] > target) {
                    break;
                } else {
                    return true;
                }
            }
        }

        return false;
    }
}

题目来源:leetcode

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小手追梦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值