通信基础概念(四)傅立叶变换

傅立叶级数与傅立叶变换

      \;\;\,\quad 傅立叶级数/变换的作用是求时域信号的频域表示,傅立叶级数作用于周期信号,而对于非周期信号可以使用傅立叶变换,而在引入冲激函数 δ ( t ) \delta(t) δ(t)之后就可以对周期信号也做傅立叶变换。

      \;\;\,\quad 傅立叶级数。在上一篇文章中,我们讨论了相关正交的概念——相关函数用内积用来表述计算两个信号的相似性;用正交性来尽可能简单地描述地描述信号。从这点出发,结合前人研究的经验,傅立叶想到使用三角函数去描述周期信号(后面拓展到非周期信号),将一个周期信号用三角函数的加权和表示,这就是傅立叶级数/变换的来源。
      \;\;\,\quad 可以证明, { 1 , cos ⁡ ( x ) , sin ⁡ ( x ) , cos ⁡ ( 2 x ) , sin ⁡ ( 2 x ) , . . . } \{1,\cos(x),\sin(x),\cos(2x),\sin(2x),...\} {1,cos(x),sin(x),cos(2x),sin(2x),...}是一个完备正交函数集1,傅立叶将用这个函数集去对信号进行分解。上一篇文章说了,可以把一个信号表示为函数集内各个函数的加权和,即下式。那么问题来了,系数 c i c_i ci怎么求呢?
f ( x ) = ∑ i = 1 n c i g i ( x ) f(x)=\sum_{i=1}^{n}{c_ig_i(x)} f(x)=i=1ncigi(x)       \;\;\,\quad 这就要用到相关了。理所当然地,既然是信号分解,那系数就应该表示在这个“方向”上投影的大小(如果不好理解,想想高中物理中,对力的正交分解)。而相关性就是用投影的大小表示的,你说巧不巧。既然这样,那这个系数 c i c_i ci就很好求了!大概应该长这样:
c i = ∫ − ∞ ∞ f ( t ) g i ( t ) d t c_i=\int_{-\infty}^{\infty}{f(t)g_i(t)dt} ci=f(t)gi(t)dt       \;\;\,\quad 嗯,这么看, g i ( t ) g_i(t) gi(t)有了, c i c_i ci怎么算也知道了,可以把傅立叶放出来了。
f ( t ) = a 0 + ∑ n = 1 ∞ a n cos ⁡ ( n ω n t ) + b n sin ⁡ ( n ω n t ) 其 中 , a 0 = 1 T ∫ t 0 t 0 + T f ( t ) × 1 d t ( 直 流 分 量 ) a n = 2 T ∫ t 0 t 0 + T f ( t ) cos ⁡ ( n ω 1 t ) d t ( 余 弦 分 量 ) b n = 2 T ∫ t 0 t 0 + T f ( t ) sin ⁡ ( n ω 1 t ) d t ( 正 弦 分 量 ) t 0 任 取 , T 为 信 号 周 期 , ω 为 角 频 率 , ω = 2 π f = 2 π T \bm{f(t)=a_0+\sum_{n=1}^{\infty}{a_n\cos{(n\omega_nt)}+b_n\sin{(n\omega_nt)}}} \\其中,a_0=\frac{1}{T}\int_{t_0}^{t_0+T}f(t)\times1 dt(直流分量) \\a_n=\frac{\textbf{2}}{T}\int_{t_0}^{t_0+T}f(t)\cos{(n\omega_1t)}dt (余弦分量) \\b_n=\frac{\textbf{2}}{T}\int_{t_0}^{t_0+T}f(t)\sin{(n\omega_1t)}dt(正弦分量) \\t_0任取,T为信号周期,\omega 为角频率,\omega=2\pi f=\frac{2\pi}{T} f(t)=a0+n=1ancos(nωnt)+bnsin(nωnt)a0=T1t0t0+Tf(t)×1dtan=T2t0t0+Tf(t)cos(nω1t)dtbn=T2t0t0+Tf(t)sin(nω1t)dtt0Tωω=2πf=T2π       \;\;\,\quad 看上去像是这么一回事儿,但是怎么多了个 1 T \frac{1}{T} T1,甚至还有 2 T \frac{\textbf{2}}{T} T2呢?为了公平起见,取平均。如果不取平均,周期越长的信号积分值可能会越大,对周期短的信号不公平。那分子上的“2”又是从哪里冒出来的呢?这是个好问题!那不如再问多一个问题,为啥求和的范围是 n = 1 n=1 n=1 ∞ \infty 呢?好像没有规定 n n n不能为负数吧?不对, n n n怎么可能是负数!如果 n n n是负数那岂不是出现了负频率了?那么问题又来了,负频率真的不存在么,如果存在它有什么意义呢?如果想深究,请看附录2,我们就暂且承认它存在吧。引入了负频率之后就很好解释了,本来应该是 ∑ − ∞ ∞ \sum_{-\infty}^{\infty} 的,但是这么巧,对我们用到的实信号而言,正负频率系数是相同的,为了计算方便就取一半, ∑ n = 1 ∞ \sum_{n=1}^{\infty} n=1,同时系数乘以2,完事儿~

      \;\;\,\quad 傅立叶级数的“简单”表示。傅立叶级数的原理其实就是上面所说的,把原信号正交分解,再求系数。只不过,在一个式子里面即有cos也有sin,写起来有点长。人是很懒的,能不能少写点呢?这就要用到高中所学的cos和sin的合并公式了,傅立叶级数就可以写成
f ( t ) = c 0 + ∑ n = 1 ∞ c n cos ⁡ ( n ω n t + φ n ) 其 中 , c 0 = a 0 , c n 2 = a n 2 + b n 2 , φ n = arctan ⁡ ( − b n a n ) \bm{f(t)=c_0+\sum_{n=1}^{\infty}{c_n\cos{(n\omega_nt+\varphi_n)}}} \\其中,c_0=a_0,c_n^2=a_n^2+b_n^2,\varphi_n=\arctan(-\frac{b_n}{a_n}) f(t)=c0+n=1cncos(nωnt+φn)c0=a0cn2=an2+bn2φn=arctan(anbn)       \;\;\,\quad 能不能再简单点呢?那就引入复频率吧!欧拉老爷子曾经说过, e i x = cos ⁡ ( x ) + i sin ⁡ ( x ) e^{ix}=\cos(x)+i\sin(x) eix=cos(x)+isin(x),再做一个 x = n ω t x=n\omega t x=nωt的变量代换,然后我们得到了指数形式的傅立叶级数
f ( t ) = ∑ n = − ∞ ∞ F n e j ω n t 其 中 , F n = 1 T ∫ t 0 t 0 + T f ( t ) e - j ω n t d t \bm{f(t)=\sum_{n=-\infty}^{\infty}F_ne^{j\omega_nt}} \\其中,F_n=\frac{1}{T}\int_{t_0}^{t_0+T}f(t)e^{\textbf{-}j\omega_nt}dt f(t)=n=FnejωntFn=T1t0t0+Tf(t)e-jωntdt       \;\;\,\quad 多简洁!注意,积分是 ∑ − ∞ ∞ \sum_{-\infty}^{\infty} ,包括了负频率,因此 F n F_n Fn 1 T \frac{1}{T} T1,非常直观。诶不对!为什么求 F n F_n Fn时做相关运算的复指数信号是负值( - j ω n t {\textbf{-}j\omega_nt} -jωnt)?这是因为它是个复信号,在上一篇文章附录我们专门提到过,对复能量信号求相关,要对 f 2 f_2 f2求共轭, R 12 ( τ ) = ∫ − ∞ + ∞ f 1 ( t ) ⋅ f 2 ∗ ( t − τ ) d t R_{12}(\tau)=\int_{-\infty}^{+\infty}{f_1 (t)·f_2^* (t-\tau)}dt R12(τ)=+f1(t)f2(tτ)dt,而 e j ω n t e^{j\omega_nt} ejωnt的共轭就是 e - j ω n t e^{\textbf{-}j\omega_nt} e-jωnt。这样来看这条式子就很好理解了。其中 F n F_n Fn是复振幅,前面的 a n , b n , c n a_n,b_n,c_n an,bn,cn都是实数。由这个 F n F_n Fn我们可以得到 f ( t ) f(t) f(t)的双边频谱(范围从 − ∞ -\infty ∞ \infty ),但是由于 F n F_n Fn是复数,画图的时候我们只能画出它的绝对值 ∣ F n ∣ |F_n| Fn,这是需要注意的(除非画三维频谱图)。

      \;\;\,\quad 傅立叶变换。有了指数形式的傅立叶级数的认识,理解傅立叶变化就简单多了。周期信号的频谱是离散的,只有特定频点(谐波的整数倍)有值;而非周期信号的频谱是连续的,没有特定的谐波频率,所以要把指数形式的傅立叶级数的求和换为积分,由此,我们就得到傅立叶变换和逆变换的公式:
F ( ω ) = F [ f ( t ) ] = ∫ − ∞ + ∞ f ( t ) e - j ω n t d t f ( t ) = F − 1 [ F ( ω ) ] = 1 2 π ∫ − ∞ + ∞ F ( ω ) e j ω n t d ω F(\omega)=\mathcal{F}[f(t)]=\int_{-\infty}^{+\infty}{f (t)e^{\textbf{-}j\omega_nt}}dt \\f(t)=\mathcal{F}^{-1}[F(\omega)]=\frac{1}{2\pi}\int_{-\infty}^{+\infty}{F(\omega)e^{j\omega_nt}}d\omega F(ω)=F[f(t)]=+f(t)e-jωntdtf(t)=F1[F(ω)]=2π1+F(ω)ejωntdω       \;\;\,\quad p.s. F ( ω ) F(\omega) F(ω)可能在别的书上表示为 F ( j ω ) , F ( e j ω ) F(j\omega),F(e^{j\omega}) F(jω),F(ejω)
      \;\;\,\quad 可能你们还想问, 1 T \frac{1}{T} T1怎么不见了,怎么又出来了个 1 2 π \frac{1}{2\pi} 2π1,emmm这其实是个数学问题,大概意思是来源于 ω = 2 π T \omega=\frac{2\pi}{T} ω=T2π,详细证明请看奥本海姆《信号与系统》第四章。这篇文章主要内容是讲它核心运算的意义,将原时域上表示的信号与频域信号做内积,投影到频域的各个频点上。

      \;\;\,\quad 至此,对傅立叶级数和傅立叶变换的讨论就结束了。3我是使用相关和正交的概念来对他们进行讨论的,与从三角函数讲起的文章4相比,这种思路更容易拓展到拉普拉斯变换、z变换,甚至拓展到自己想要的域上面的变换。

      \;\;\,\quad 如果本文有不严谨和不科学的地方,欢迎指出!谢谢各位捧场!


  1. 正交函数集指的是对集合内的每个函数,两两正交,即 ⟨ g i , g j ⟩ = 0 ( i ≠ j ) \langle{g_i,g_j}\rangle=0(i \neq j) gi,gj=0(i̸=j)。完备正交函数集,指的是这个集合满足,找不到其他函数,即不在这个函数集内,还能和该集合内的函数正交。详情见郑君里《信号与系统》第六章。 ↩︎

  2. 负频率这东西,看起来像是欧拉老头子引入的,只有数学上的意义。由于我们平时看到的信号都是实信号,不好理解这怎么能是负的,其实只是我们的视角问题。回忆一下复数的幅角表示, c = a + j b = A e j θ c=a+jb=Ae^{j\theta} c=a+jb=Aejθ θ \theta θ为正时角度为正逆时针转,负数为顺时针转,而角频率 ω \omega ω就是对 θ \theta θ求导得到的,负频率就意味着它的“转动方向”是顺时针。这在机械和控制理论上用得可能会更多。由于比较抽象,可以参考别人对负频率的解释加以理解:链接1链接2链接3 ↩︎

  3. 这篇文章经过了三篇文章的铺垫:什么是信号信号的观测域相关与正交。(不要脸地打个小广告) ↩︎

  4. 并不是说从三角函数讲起不好,我只是提供了另外一种思路。在写完本文后,我又查了一下网上讲傅立叶变换的文章,这一篇讲解得非常地生动形象(主要是配了很多图),推荐大家去看一下。看待一个事物的方法不止一种,多看,多学,多想会更有帮助。 ↩︎

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值